问题描述
  Alice和Bob正在玩井字棋游戏。
  井字棋游戏的规则很简单:两人轮流往3*3的棋盘中放棋子,Alice放的是“X”,Bob放的是“O”,Alice执先。当同一种棋子占据一行、一列或一条对角线的三个格子时,游戏结束,该种棋子的持有者获胜。当棋盘被填满的时候,游戏结束,双方平手。
  Alice设计了一种对棋局评分的方法:
  - 对于Alice已经获胜的局面,评估得分为(棋盘上的空格子数+1);
  - 对于Bob已经获胜的局面,评估得分为 -(棋盘上的空格子数+1);
  - 对于平局的局面,评估得分为0;
例如上图中的局面,Alice已经获胜,同时棋盘上有2个空格,所以局面得分为2+1=3。
  由于Alice并不喜欢计算,所以他请教擅长编程的你,如果两人都以最优策略行棋,那么当前局面的最终得分会是多少?
输入格式
  输入的第一行包含一个正整数T,表示数据的组数。
  每组数据输入有3行,每行有3个整数,用空格分隔,分别表示棋盘每个格子的状态。0表示格子为空,1表示格子中为“X”,2表示格子中为“O”。保证不会出现其他状态。
  保证输入的局面合法。(即保证输入的局面可以通过行棋到达,且保证没有双方同时获胜的情况)
  保证输入的局面轮到Alice行棋。
输出格式
  对于每组数据,输出一行一个整数,表示当前局面的得分。
样例输入
3
1 2 1
2 1 2
0 0 0
2 1 1
0 2 1
0 0 2
0 0 0
0 0 0
0 0 0
样例输出
3
-4
0
样例说明
  第一组数据:
  Alice将棋子放在左下角(或右下角)后,可以到达问题描述中的局面,得分为3。
  3为Alice行棋后能到达的局面中得分的最大值。
  第二组数据:

Bob已经获胜(如图),此局面得分为-(+)=-。
  第三组数据:
  井字棋中若双方都采用最优策略,游戏平局,最终得分为0。
数据规模和约定
  对于所有评测用例, ≤ T ≤ 。
#include <iostream>
#include <algorithm>
using namespace std; int a[][]; //判断行是否胜利 ,at为第几行,id为是谁在下棋,1为Alice,2为Bob
bool row(int at,int id)
{
if(a[at][] == id && a[at][] == id && a[at][] == id)
{
return true;
} return false;
} //判断列是否胜利 ,at为第几行,id为是谁在下棋,1为Alice,2为Bob
bool line(int at,int id)
{
if(a[][at] == id && a[][at] == id && a[][at] == id)
{
return true;
} return false;
} //如果胜利计算当前棋盘的得分
int sum(int id)
{
int s = ;
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
if(a[i][j] == )
{
s++;
}
}
} //Alice胜利,得分为正
if(id == )
{
return s;
}
else
{
return - * s;
}
} void show()
{
for(int i=;i<;i++)
{
for(int j = ;j<;j++)
{
cout << a[i][j] << " ";
}
cout << endl;
} cout << endl;
} //判断是否获胜
bool win(int id)
{
bool yes = false; //先比较当前局面的行
for(int i=;i<;i++)
{
if(row(i,id) == true)
{
yes = true;
}
} //再比较当前局面的列
for(int i=;i<;i++)
{
if(line(i,id) == true)
{
yes = true;
}
} //比较对角线
if(a[][] == id && a[][] == id && a[][] == id)
{
yes = true;
} if(a[][] == id && a[][] == id && a[][] == id)
{
yes = true;
} //判断是否胜利
if(yes)
{
return true;
}
else
{
return false;
}
} //对抗搜索,每个人都取对自己最有利的得分
int dfs(int id)
{
//无路可走,和棋
if(sum(id) == || sum(id) == -)
{
return ;
} //max表示 alice能得的最高分
int maxNum = -;
//min表示bob能得到的最高分
int minNum = ; //遍历所有情况
//并判断当前局面,用当前最大值与对手回合的最大值进行比较
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
if(a[i][j] == )
{
//当前棋手在a[i][j]落子 ,再对此时的局面进行判断
a[i][j] = id; if( win(id) )
{
int score = sum(id);
a[i][j] = ; //score>0表明Alice获胜,返回Alice的得分
//score<0表明Bob获胜,返回Bod的得分
return score > ? max(maxNum,score) : min(minNum,score);
} //每个人都假设自己能赢,用自己的最高分和对手的下一次进攻最高分比相比较,
//对手能赢返回正,不能赢返回0
//如果判断此种局面赢不了,则会返回一个负值
if(id == )
{
maxNum = max(maxNum,dfs( id% + ));
}
else
{
minNum = min(minNum,dfs( id% + ));
} //回溯
a[i][j] = ;
}
}
} return id== ? maxNum : minNum;
} int main()
{
int n;
cin >> n;
for(int i=;i<n;i++)
{
for(int j=;j<;j++)
{
for(int k=;k<;k++)
{
cin >> a[j][k];
}
} if(win())
{
cout << sum() << endl;
continue;
} if(win())
{
cout << sum() << endl;
continue;
} int res = dfs();
cout << res << endl; }
return ;
}

ccf 201803-4 棋局评估 (对抗搜索)的更多相关文章

  1. CCF(棋局评估)博弈论+对抗搜索+DFS

    201803-4 棋局评估 这题主要使用对抗搜索,也就是每一步寻找可以下棋的位置,通过在这一步下棋看最后会取的什么样的分数. #include<iostream> #include< ...

  2. ccf 201803-4 棋局评估(Python实现)

    一.原题 问题描述 试题编号: 201803-4 试题名称: 棋局评估 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 Alice和Bob正在玩井字棋游戏. 井字棋游戏的规则很 ...

  3. BZOJ 3106: [cqoi2013]棋盘游戏(对抗搜索)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3106 对抗搜索,f[x][y][a][b][c][d]表示当前谁走,走了几步,及位置. (因为 ...

  4. BZOJ.5248.[九省联考2018]一双木棋chess(对抗搜索 记忆化)

    BZOJ 洛谷P4363 [Update] 19.2.9 重做了遍,感觉之前写的有点扯= = 首先棋子的放置情况是阶梯状的. 其次,无论已经放棋子的格子上哪些是黑棋子哪些是白棋子,之前得分如何,两人在 ...

  5. P2962 [USACO09NOV]灯Lights 对抗搜索

    \(\color{#0066ff}{题目描述}\) 贝希和她的闺密们在她们的牛棚中玩游戏.但是天不从人愿,突然,牛棚的电源跳闸了,所有的灯都被关闭了.贝希是一个很胆小的女生,在伸手不见拇指的无尽的黑暗 ...

  6. 博弈论经典算法(一)——对抗搜索与Alpha-Beta剪枝

    前言 在一些复杂的博弈论题目中,每一轮操作都可能有许多决策,于是就会形成一棵庞大的博弈树. 而有一些博弈论题没有什么规律,针对这样的问题,我们就需要用一些十分玄学的算法. 例如对抗搜索. 对抗搜索简介 ...

  7. 【BZOJ3106】[CQOI2013] 棋盘游戏(对抗搜索)

    点此看题面 大致题意: 在一张\(n*n\)的棋盘上有一枚黑棋子和一枚白棋子.白棋子先移动,然后是黑棋子.白棋子每次可以向上下左右四个方向中任一方向移动一步,黑棋子每次则可以向上下左右四个方向中任一方 ...

  8. P4363 [九省联考2018]一双木棋chess(对抗搜索+记忆化搜索)

    传送门 这对抗搜索是个啥玩意儿…… 首先可以发现每一行的棋子数都不小于下一行,且局面可由每一行的棋子数唯一表示,那么用一个m+1进制数来表示当前局面,用longlong存,开map记忆化搜索 然后时间 ...

  9. ICPC Asia Nanning 2017 I. Rake It In (DFS+贪心 或 对抗搜索+Alpha-Beta剪枝)

    题目链接:Rake It In 比赛链接:ICPC Asia Nanning 2017 Description The designers have come up with a new simple ...

随机推荐

  1. Python之模块、正则

    一.模块import 模块的实质就是把要导入模块里面的代码,从上到下执行一遍,找模块的顺序是,先从当前目录下找,找不到的话,再环境变量里面找导入的模块名字最好不要有.,a.import sysprin ...

  2. Map 键值对 set get delete

  3. 怎么用最短时间高效而踏实地学习Python?

    之所以写这篇文章,在标题里已经表达得很清楚了.做技术的人都知道,时间就是金钱不是一句空话,同一个技术,你比别人早学会半年,那你就能比别人多拿半年的钱.所以有时候别人去培训我也不怎么拦着,为什么?因为培 ...

  4. 2018年为什么要学习Linux?Linux运维的前景还好吗?

    Linux一直是很多人入行IT的首选,无论是从入行难度还是职业寿命来说,Linux运维都比开发有着更大的优势.为了得到高薪工作,很多人在Linux学习过程中付出了非常大的努力,最终也得到了不错的收获. ...

  5. 通过javascript在iframe中加载html

    在spring mvc中,虽然有时候,在控制器中设置返回值是json对象,但在拦截器出现错误的时候,仍然可能返回html(根据设置的不同),如果要展示这些html,最好把他们放入iframe中,以防这 ...

  6. Java 初学者

    在有C++和C#基础之下开始学习Java,主要记录了一些和C++C#不同的或不知到的点 栈对象必须初始化,否则会报错.(其他的则有默认值) byte占用8位,char占用16位 接口默认为public ...

  7. Python MongoDB 教程

    基于菜鸟教程实际操作后总结而来 Python MongoDB MongoDB 是目前最流行的 NoSQL 数据库之一,使用的数据类型 BSON(类似 JSON). MongoDB 数据库安装与介绍可以 ...

  8. 29. 误拼写时的fuzzy模糊搜索技术

    搜索的时候,可能输入的搜索文本会出现误拼写的情况,这时就需要es为我们进行智能纠错 比如有两个文档: doc1: hello world doc2: hello java     现在要搜索:hall ...

  9. BUPT2017 springtraining(16) #1 ——近期codeforces简单题目回顾

    这里是contest 8道题全部来源于 cf 的两场contest (出题人可真懒啊 Codeforces Round #411 (Div. 2)的ABCDE Codeforces Round #40 ...

  10. 清北学堂模拟赛d6t3 反击数

    分析:显然是一道数位dp题,不过需要一些奇怪的姿势.常规的数位dp能统计出一个区间内满足条件的数的个数,可是我们要求第k个,怎么办呢?转化为经典的二分问题,我们二分当前数的大小,看它是第几大的,就可以 ...