JPEG压缩图像超分辨率重建算法
压缩图像超分辨率重建算法学习
超分辨率重建是由一幅或多幅的低分辨率图像重构高分辨率图像,如由4幅1m分辨率的遥感图像重构分辨率0.25m分辨率图像。在军用/民用上都有非常大应用。
眼下的超分辨率重建方法主要分为3类:基于插值、基于学习、基于重建的方法。现在已经研究得比較多。可是大多数算法都是对普通图像进行研究,针对压缩图像/视频超分辨率重建的研究比較少。近期查阅部分文献。进行了学习。在此做些总结。
相关的文献:
1、Super-resolution from compressed video
2、Bayesian Resolution Enhancement of Compressed Video
3、RobustWeb Image/Video Super-Resolution
4、Self-Learning-Based Single Image Super-Resolution
of a Highly Compressed Image
算法原理:
文献1/2:文献1/2是同一人写的,该作者就该问题发表了多篇文章,方法基本类似。其思路与常规的基于重建的超分辨率方法类似,都是建立观測模型。依据数据保真项和正则化项建立重建代价函数。不同的是,数据保真项有些变化,由于要考虑压缩图像特有的量化噪声及取整噪声等,而不是通常如果的高斯噪声。此外正则化项也有所不同。须要考虑JPEG图像的块效应等,因此除了常规的约束,要对块边界的高频进行限制。详细内容參看文献。
文献3:这篇文献相对要新点,是2010年的。文章的思路非常好理解,先对JPEG压缩图像去块效应,然后超分辨率。在去块效应阶段,作者使用的是自适应PDE正则化方法,同一时候提出一种自适应确定正则化强度的方法。而在重建阶段。则是採用的基于例子的方法,这种方法相对照较成熟。
事实上这样的两步处理方式并不合理,是不提倡这样处理的,而应该将其放到一起考虑,如文献1/2那样。
文献4:这篇文献採用了稀疏字典的相关方法。对于待重建的图像。首先进行下採样。并将原始图像和下採样图像都用BM3D处理提取低频,相减后得到原始图像和下採用图像的高频(作者觉得块效应仅仅存在于高频分量之中,分别获取原始图像和下採样图像的高频是为了训练字典,而且是自训练字典)。
检測出高频之后。作者提出将高频分为有块效应块/无块效应块。分别建立字典D1/D2。而对于有块效应字典D1。作者将其原子聚类,觉得1部分原子是对块效应做贡献的,还有一部分原子则不含块效应,那么对于输入的块,我就仅仅採用不含块效应的原子重建,达到去块效应的目的。
事实上这样的去块效应的方法。作者写了还有一篇文章,EFFICIENT IMAGE/VIDEO DEBLOCKING VIA SPARSE REPRESENTATION,大家能够看一看。看了之后就更好理解这篇关于压缩图像超分辨率的文章,无非就是字典构建的问题。
临时就这么多,写得不好,各位看官将就看,有问题能够再讨论哦!
!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
研究方向:图像压缩、超分辨率、图像去噪、图像复原等图像质量提升技术
JPEG压缩图像超分辨率重建算法的更多相关文章
- 基于稀疏表示的图像超分辨率《Image Super-Resolution Via Sparse Representation》
由于最近正在做图像超分辨重建方面的研究,有幸看到了杨建超老师和马毅老师等大牛于2010年发表的一篇关于图像超分辨率的经典论文<ImageSuper-Resolution Via Sparse R ...
- 【超分辨率】—图像超分辨率(Super-Resolution)技术研究
一.相关概念 1.分辨率 图像分辨率指图像中存储的信息量,是每英寸图像内有多少个像素点,分辨率的单位为PPI(Pixels Per Inch),通常叫做像素每英寸.一般情况下,图像分辨率越高,图像中包 ...
- 图像超分辨率算法:CVPR2020
图像超分辨率算法:CVPR2020 Unpaired Image Super-Resolution using Pseudo-Supervision 论文地址: http://openaccess.t ...
- 『超分辨率重建』从SRCNN到WDSR
超分辨率重建技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像.SR可分为两类: 1. 从多张低分辨率图像重建出高分辨率图像 2. 从单张低分辨率图 ...
- Image Super-Resolution via Sparse Representation——基于稀疏表示的超分辨率重建
经典超分辨率重建论文,基于稀疏表示.下面首先介绍稀疏表示,然后介绍论文的基本思想和算法优化过程,最后使用python进行实验. 稀疏表示 稀疏表示是指,使用过完备字典中少量向量的线性组合来表示某个元素 ...
- 小米造最强超分辨率算法 | Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search
本篇是基于 NAS 的图像超分辨率的文章,知名学术性自媒体 Paperweekly 在该文公布后迅速跟进,发表分析称「属于目前很火的 AutoML / Neural Architecture Sear ...
- 比SRCNN效果好的传统超分辨率算法汇总
1.基于深度协作表达的人脸图像超分辨率算法研究与应用_百度学术 采用一种深度协作表达算法框架,构造深度的多线性模型 分段拟合高低分辨率图像块之间的非线性关系,本文算法简洁高效,提供了一种新的深度学习模 ...
- 【超分辨率】- CVPR2019中SR论文导读与剖析
CVPR2019超分领域出现多篇更接近于真实世界原理的低分辨率和高分辨率图像对应的新思路.具体来说,以前论文训练数据主要使用的是人为的bicubic下采样得到的,网络倾向于学习bicubic下采样的逆 ...
- HMS Core机器学习服务图像超分能力,基于深度学习提升新闻阅读体验
在移动端阅读资讯时,人们对高分辨率.高质量的图像要求越来越高.但受限于网络流量.存储.图片源等诸多因素,用户无法便捷获得高质量图片.移动端显示设备的高分辨率图片获得问题亟待解决.不久前,HMS Cor ...
随机推荐
- DDos攻击篇
DDoS(Distributed Denial of Service,分布式拒绝服务)攻击的主要目的是让指定目标无法提供正常服务,甚至从互联网上消失,是目前最强大.最难防御的攻击之一. 1.1. SY ...
- Jsoup的简单的使用示例
利用Jsoup中的相关方法实现网页中的数据爬去,本例子爬去的网页为比较流行的programmableweb中的mashup描述内容,然后为数据库中存在的mashup添加相应的描述. package c ...
- Android线程间异步通信机制源码分析
本文首先从整体架构分析了Android整个线程间消息传递机制,然后从源码角度介绍了各个组件的作用和完成的任务.文中并未对基础概念进行介绍,关于threadLacal和垃圾回收等等机制请自行研究. 基础 ...
- 资源帖:CV代码库搜集
2013计算机视觉代码合集一: 原文链接:http://www.yuanyong.org/blog/cv/cv-code-one 切记:一定要看原文链接 原文链接: http://blog.csdn. ...
- springmvc中freemarker的搭建
在springmvc框架已经搭好的前提下,导入freemarker.jar,此处版本是2.3. 主要的配置工作都在spring-servlet.xml中,请看代码: <!--配置试图解析器 -- ...
- TortoiseSvn问题研究(一)
问题描述 今天在工作中遇到一个SVN方面的问题,牵扯出使用SVN这一段时间的一系列问题. 具体来说,是这样的: 上周五有上线分支,自己的分支需要merge: 很多项目小组都在开发这个项目,再往前好像也 ...
- C语言运算符类型
算术运算符 运算符 描述 + 两个操作数相加 - 第一操作数减去第二个操作数 * 两个操作数相乘 / 分子除以分母 % 模运算和整数除法后的余数 ++ 递增操作增加一个整数值 -- 递减操作减少一个整 ...
- RabbitMQ学习之基于spring-rabbitmq的RPC远程调用
http://blog.csdn.net/zhu_tianwei/article/details/40920985 spring-rabbitmq中实现远程接口调用,主要在com.rabbitmq.s ...
- Nuget包含css\js等资源文件
<Project Sdk="Microsoft.NET.Sdk"> <PropertyGroup> <TargetFramework>netst ...
- Windows Server菜鸟宝典之一:Windows Server 2008 R2 AD服务器搭建
1.对于将要安装成为DC的服务器来讲,其系统配置以及基本的磁盘规划在此就不在累述了,但是关键的网络连接属性是必须要注意的.可以通过打开本地连接的属性来进行配置其IP属性.作为服务器DC的IP地 ...