CF 86D 莫队(卡常数)
CF 86D 莫队(卡常数)
5 seconds
256 megabytes
standard input
standard output
An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, al + 1..., ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of products Ks·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.
You should calculate the power of t given subarrays.
First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.
Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.
Next t lines contain two positive integers l, r (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.
Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.
Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use %I64d).
3 2
1 2 1
1 2
1 3
3
6
8 3
1 1 2 2 1 3 1 1
2 7
1 6
2 7
20
20
20
Consider the following array (see the second sample) and its [2, 7] subarray (elements of the subarray are colored):
Then K1 = 3, K2 = 2, K3 = 1, so the power is equal to 32·1 + 22·2 + 12·3 = 20.
题意:
一个数列,问[L,R]区间内(每个数字的个数的平方*数字的大小)的和。
思路:
莫队模板。
离线+分块
将n个数分成sqrt(n)块。
对所有询问进行排序,排序标准:
1. Q[i].left /block_size < Q[j].left / block_size (块号优先排序)
2. 如果1相同,则 Q[i].right < Q[j].right (按照查询的右边界排序)
问题求解:
从上一个查询后的结果推出当前查询的结果。(这个看程序中query的部分)
如果一个数已经出现了x次,那么需要累加(2*x+1)*a[i],因为(x+1)^2*a[i] = (x^2 +2*x + 1)*a[i],x^2*a[i]是出现x次的结果,(x+1)^2 * a[i]是出现x+1次的结果。
时间复杂度分析:
排完序后,对于相邻的两个查询,left值之间的差最大为sqrt(n),则相邻两个查询左端点移动的次数<=sqrt(n),总共有t个查询,则复杂度为O(t*sqrt(n))。
又对于相同块内的查询,right端点单调上升,每一块所有操作,右端点最多移动O(n)次,总块数位sqrt(n),则复杂度为O(sqrt(n)*n)。
right和left的复杂度是独立的,因此总的时间复杂度为O(t*sqrt(n) + n*sqrt(n))。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
#define N 200100
typedef long long ll;
ll a[N], cnt[N*], ans[N], res;
int L, R; struct node {
int x, y, l, p;
} q[N];
bool cmp(const node &x, const node &y) {
if (x.l == y.l) return x.y < y.y;
return x.l < y.l;
}
void query(int x, int y, int flag) {
if (flag) {
for (int i=x; i<L; i++) {
res += ((cnt[a[i]]<<)+)*a[i];
cnt[a[i]]++;
}
for (int i=L; i<x; i++) {
cnt[a[i]]--;
res -= ((cnt[a[i]]<<)+)*a[i];
}
for (int i=y+; i<=R; i++) {
cnt[a[i]]--;
res -= ((cnt[a[i]]<<)+)*a[i];
}
for (int i=R+; i<=y; i++) {
res += ((cnt[a[i]]<<)+)*a[i];
cnt[a[i]]++;
} } else {
for (int i=x; i<=y; i++) {
res += ((cnt[a[i]]<<)+)*a[i];
cnt[a[i]]++;
}
}
L = x, R = y;
}
int main() {
int n, t; scanf("%d%d", &n, &t);
for (int i=; i<=n; i++) scanf("%I64d", &a[i]);
int block_size = sqrt(n); for (int i=; i<t; i++) {
scanf("%d%d", &q[i].x, &q[i].y);
q[i].l = q[i].x / block_size;
q[i].p = i;
} sort(q, q+t, cmp); memset(cnt, , sizeof(cnt)); res = ;
for (int i=; i<t; i++) {
query(q[i].x, q[i].y, i);
ans[q[i].p] = res;
} for (int i=; i<t; i++) printf("%I64d\n", ans[i]); return ;
}
CF 86D 莫队(卡常数)的更多相关文章
- BZOJ1878 [SDOI2009] HH的项链 [莫队,卡常]
BZOJ传送门,洛谷传送门 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义. ...
- 清橙A1206.小Z的袜子 && CF 86D(莫队两题)
清橙A1206.小Z的袜子 && CF 86D(莫队两题) 在网上看了一些别人写的关于莫队算法的介绍,我认为,莫队与其说是一种算法,不如说是一种思想,他通过先分块再排序来优化离线查询问 ...
- [luogu1972][bzoj1878][SDOI2009]HH的项链【莫队+玄学卡常】
题目大意 静态区间查询不同数的个数. 分析 好了,成功被这道题目拉低了AC率... 打了莫队T飞掉了,真的是飞掉了QwQ. 蒟蒻想不出主席树的做法,就换成了莫队... 很多人都不知道莫队是什么... ...
- cf 442 div2 F. Ann and Books(莫队算法)
cf 442 div2 F. Ann and Books(莫队算法) 题意: \(给出n和k,和a_i,sum_i表示前i个数的和,有q个查询[l,r]\) 每次查询区间\([l,r]内有多少对(i, ...
- CF 617E【莫队求区间异或和】
E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- Codeforces 86D Powerful array (莫队)
D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input standard i ...
- CodeForces 86D Powerful array(莫队+优化)
D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input standard i ...
- CF 375D. Tree and Queries【莫队 | dsu on tree】
题意: 一棵树,询问一个子树内出现次数$≥k$的颜色有几种 强制在线见上一道 用莫队不知道比分块高到哪里去了,超好写不用调7倍速度!!! 可以用分块维护出现次数这个权值,实现$O(1)-O(\sqrt ...
- 【Cf #502 H】The Films(莫队)
题面的简述:总共有$m$种书,书架上共有$n$本书,给出$n$本书的种类,并有$Q$个询问,每次询问给出$l, r, k$.每次询问时都会先出现$k * m$本书,每种书各$k$本,然后再加入书架上的 ...
随机推荐
- cmd 切换目录和配置环境变量
记录一下: 在用cmd进行切换盘符的时候, 如果是从 C盘切换到其他盘的话: D:直接回车就行了. 如果是在同一个盘符内切换文件夹的话,cd D:\ComputerSoft\curl\curl-7.6 ...
- THREE.js代码备份——webgl - scene animation(通过加载json文件来加载动画和模型)
<!DOCTYPE html> <html lang="en"> <head> <title>three.js webgl - sc ...
- mongodb分片集群安装教程
mongodb 集群包含副本集群,主从集群以及分片集群,分片集群比较复杂,这里测试我采用了三台机器,交差部署 blog地址:http://www.cnblogs.com/caoguo 一 .环境:#m ...
- Android 双屏异显
android双屏是克隆模式,如果要在第二屏幕显示不同内容,需要自定义一个Presentation类 1.先设置权限 (刚开始折腾很久没有效果,后来发现是没设置权限) <!-- 显示系统窗口权限 ...
- iDRAC RAC0218 最大会话限制
用ssh工具登陆IDRAC远程管理ip地址: /admin1-> racadm racreset RAC reset operation initated successfully. It m ...
- iptables详解(2):iptables实际操作之规则查询
所属分类:IPtables Linux基础 在阅读这篇文章之前,请确保你已经阅读了如下文章,如下文章总结了iptables的相关概念,是阅读这篇文章的基础. 图文并茂理解iptables 如果你是一 ...
- nodejs 文件操作模块 fs
const fs=require("fs"); //文件操作 //创建目录 ./ 代表当前目录 ../ 代表上级目录fs.mkdir('./test',function(err){ ...
- 计蒜客 疑似病毒 (AC自动机 + 可达矩阵)
链接 : Here! 背景 : 开始我同学是用 AC自动机 + DP 的方法来做这道题, 这道题的标签是 AC自动机, 动态规划, 矩阵, 按道理来说 AC自动机 + DP 应该是能过的, 但是他不幸 ...
- Going Home HDU - 1533(最大费用最小流)
On a grid map there are n little men and n houses. In each unit time, every little man can move one ...
- TCP/IP UDP 协议首部及数据进入协议栈封装的过程
数据的封装 UDP 封装 TCP 封装 IP 封装 检验和算法 当应用程序用TCP传送数据时,数据被传送入协议栈中,然后逐一通过每一层直到被当作一串比特流送入网络 注: UDP数据TCP数据基本一致. ...