BZOJ 3774 最优选择 (最小割+二分图)
题目大意:给你一个网格图,每个格子都有$a_{ij}$的代价和$b_{ij}$的回报,对于格子$ij$,想获得$b_{ij}$的回报,要么付出$a_{ij}$的代价,要么$ij$周围四联通的格子都付出代价,求最大的回报-代价
好神的一道题,%%%jr
想获得$b_{ij}$的回报,要么付出$a_{ij}$的代价,要么$ij$周围四联通的格子都付出代价
所以把棋盘像国际象棋一样黑白交叉染色,原图就变成了一个类似于二分图的东西
每个格子都拆成$2$个点
对于白格子,源点$S$向$W1$连流量为$a_{ij}$的边,$W1$向$W2$连流量为$b_{ij}$的边,$W2$向白格子周围四个黑格子的$B2$连流量为$inf$的边
对于黑格子,$B2$向汇点$T$连流量为$a_{ij}$的边,$B1$向$B2$连流量为$b_{ij}$的边,周围四个白格子的$W1$向$B1$连流量为$inf$的边
然后跑最大流,答案就是总回报-最大流
为什么要这么建边?我们可以对割进行分析
如果一个白格子的代价边$a_{ij}$被割掉了,说明这个格子带来的回报$\geq$代价,被归到了$T$集合里,此时流量$=$代价,统计答案时会加上回报$-$代价
如果一个白格子的代价边$a_{ij}$没被割掉,说明这个格子带来的回报$<$代价,被归到了$S$集合里,此时流量$=$回报,统计答案时会把这部分回报去掉
黑格子也是同理
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 5010
#define M1 30010
#define L1 55
using namespace std;
const int inf=0x3f3f3f3f; int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
}
struct Edge{
int to[M1<<],nxt[M1<<],flow[M1<<],head[N1],cte;
void ae(int u,int v,int f)
{
cte++; to[cte]=v; nxt[cte]=head[u];
head[u]=cte; flow[cte]=f;
}
}e; int dep[N1],que[M1],cur[N1],n,m,hd,tl,S,T;
int bfs()
{
int x,j,v;
memset(dep,-,sizeof(dep)); memcpy(cur,e.head,sizeof(cur));
hd=,tl=; que[++tl]=S; dep[S]=;
while(hd<=tl)
{
x=que[hd++];
for(j=e.head[x];j;j=e.nxt[j])
{
v=e.to[j];
if( dep[v]==- && e.flow[j]> )
{
dep[v]=dep[x]+;
que[++tl]=v;
}
}
}
return dep[T]!=-;
}
int dfs(int x,int limit)
{
int j,v,flow,ans=;
if(!limit||x==T) return limit;
for(j=cur[x];j;j=e.nxt[j])
{
v=e.to[j]; cur[x]=j;
if( dep[v]==dep[x]+ && (flow=dfs(v,min(limit,e.flow[j]))) )
{
e.flow[j]-=flow; limit-=flow;
e.flow[j^]+=flow; ans+=flow;
if(!limit) break;
}
}
return ans;
}
int Dinic()
{
int mxflow=,j,v,ans=;
while(bfs())
mxflow+=dfs(S,inf);
return mxflow;
} int xx[]={-,,,},yy[]={,,,-};
int a[L1][L1],b[L1][L1],id[L1][L1];
inline int check(int x,int y){return (x<||y<||x>n||y>m)?:;} int main()
{
scanf("%d%d",&n,&m);
int i,j,x,y,k,tot=n*m,sum=; e.cte=; S=; T=tot+tot+;
for(i=;i<=n;i++) for(j=;j<=m;j++) a[i][j]=gint();// sum+=v[i][j];
for(i=;i<=n;i++) for(j=;j<=m;j++) b[i][j]=gint(), id[i][j]=(i-)*m+j, sum+=b[i][j];
for(i=;i<=n;i++) for(j=;j<=m;j++)
{
x=id[i][j];
if((i+j)&){
e.ae(S,x,a[i][j]); e.ae(x,S,);
e.ae(x,x+tot,b[i][j]); e.ae(x+tot,x,);
for(k=;k<;k++)
{
if(!check(i+xx[k],j+yy[k])) continue;
y=id[i+xx[k]][j+yy[k]];
e.ae(x+tot,y+tot,inf); e.ae(y+tot,x+tot,);
}
}else{
e.ae(x+tot,T,a[i][j]); e.ae(T,x+tot,);
e.ae(x,x+tot,b[i][j]); e.ae(x+tot,x,);
for(k=;k<;k++)
{
if(!check(i+xx[k],j+yy[k])) continue;
y=id[i+xx[k]][j+yy[k]];
e.ae(y,x,inf); e.ae(x,y,);
}
}
}
printf("%d\n",sum-Dinic());
return ;
}
BZOJ 3774 最优选择 (最小割+二分图)的更多相关文章
- BZOJ 3774: 最优选择( 最小割 )
最小割...二分染色然后把颜色不同的点的源汇反过来..然后就可以做了. 某个点(x,y): S->Id(x,y)(回报), Id(x,y)->T(代价), Id(i,j)&& ...
- [BZOJ 3774] 最优选择 【最小割】
题目链接:BZOJ - 3774 题目分析 此题与“文理分科”那道题目有些类似.都是使用最小割来求解,先加上可能获得的权值,在减掉必须舍弃的权值(最小割). 文理分科是规定每个人和 S 连就是选文,和 ...
- 【BZOJ3774】最优选择 最小割
[BZOJ3774]最优选择 Description 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择 ...
- 【最小割/二分图最大独立集】【网络流24题】【P2774】 方格取数问题
Description 给定一个 \(n~\times~m\) 的矩阵,每个位置有一个正整数,选择一些互不相邻的数,最大化权值和 Limitation \(1~\leq~n,~m~\leq~100\) ...
- BZOJ 1934 Vote 善意的投票(最小割+二分图)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1934 题目大意: 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题 ...
- BZOJ 2039 人员雇佣 二元关系 最小割
题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...
- POJ3308 Paratroopers(最小割/二分图最小点权覆盖)
把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...
- BZOJ 1497: [NOI2006]最大获利 最小割
1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...
- bzoj 1391 [Ceoi2008]order(最小割)
[题意] 有n个有偿工作选做,m个机器,完成一个工作需要若干个工序,完成每个工序需要一个机器,对于一个机器,在不同的工序有不同的租费,但买下来的费用只有一个.问最大获益. [思路] 对于工作和机器建点 ...
随机推荐
- Vijos——T 1092 全排列
https://vijos.org/p/1092 描述 输入两个自然数m,n 1<=n<=20,1<=m<=n!输出n个数的第m种全排列. 如 :输入 3 1输出 1 2 3 ...
- codevs——T3111 CYD啃骨头
http://codevs.cn/problem/3111/ 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Desc ...
- J - Assign the task
J - Assign the task HDU - 3974 思路:一眼秒思路<(* ̄▽ ̄*)/ dfs序+线段树. 通过dfs序把树上问题转化成线段上的问题.然后用线段树解决. 错因:都 ...
- java5核心基础之泛型(3)-泛型作用于编译阶段-怎样将String对象传入Integer类型的泛型对象中?
泛型作用于编译阶段: 泛型是作用于编译阶段,在编译阶段控制类型,以确保在编写代码的时候仅仅能传入指定类型数据到泛型集合对象中去. 怎样验证呢,贴代码例如以下: package highBasic.ge ...
- rar x 解压rar文件,提示permission denied
问题: 解压rar文件,提示
- Codeforces 115A- Party(DFS)
A. Party time limit per test 3 seconds memory limit per test 256 megabytes input standard input outp ...
- Java-Spring MVC:JAVA之常用的一些Spring MVC的路由写法以及参数传递方式
ylbtech-Java-Spring MVC:JAVA之常用的一些Spring MVC的路由写法以及参数传递方式 1.返回顶部 1. 常用的一些Spring MVC的路由写法以及参数传递方式. 这是 ...
- 使用串口终端安装AIX操作系统
使用串口终端安装AIX操作系统 一.配置超级终端 首先,配置超级终端:在笔记本电脑上(Windows XP系统),点击开始à程序->附件->通讯->超级终端,配置名称为test的超级 ...
- [Hacker] 端口大全
一 .端口大全 端口:0 服务:Reserved 说明:通常用于分析操作系统.这一方法能够工作是因为在一些系统中“0”是无效端口,当你试图使用通常的闭合端口连接它时将产生不同的结果.一种典型的扫描,使 ...
- javaWeb中URLEncoder.encode编码需要调用两次
今天碰到一个问题,在Controller类中一个方法跳转到该类中的另一个方法,带着中文参数,在跳转之前对该参数进行编码: msg = java.net.URLEncoder.encode(msg,&q ...