[luogu3232 HNOI2013] 游走 (高斯消元 期望)
题目描述
一个无向连通图,顶点从1编号到N,边从1编号到M。 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
输入输出格式
输入格式:
第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1<=u,v<=N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N<=10,100%的数据满足2<=N<=500且是一个无向简单连通图。
输出格式:
仅包含一个实数,表示最小的期望值,保留3位小数。
输入输出样例
输入样例#1:
3 3
2 3
1 2
1 3
输出样例#1:
3.333
说明
边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。
题解
思路就是先求出每一条边的概率,然后编号(概率大的编号小)然后乘起来就是期望
而一条边的期望值等于它所连的两个点到这条边的期望值
而一个点到一条边的期望值等于这个点的期望值*1/点的度数
而一个点(u)的期望值是与它所连的所有点(v)的期望值/度数之和
\(f[x]=\sum_{i=1}^k\frac{f[i]}{du[i]}\) k是x所连所有点的点集
根据这个每个点列出方程高斯消元即可(注意1和n点)
code:
//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#define LL long long
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define C(i,a,b) for(register int i=(b);i>=(a);i--)
#define E(i,u) for(register int i=head[u];i;i=nxt[i])
using namespace std;
LL rd() {
LL x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-') f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
const int N=510;
struct edge
{
int to,next;
}e[N*N*2];
int st[N*N*2],n,m,tot,x,y,s[N*N*2],ed[N*N*2];
double d[N],f[N][N],ans[N],sum,E[N*N*2];
void add(int x,int y)
{
e[++tot].to=y;
e[tot].next=st[x];
st[x]=tot;
}
const double eps=1e-11;//之前1e-7结果精度爆炸QAQ
int gauss() {
int h=1,l=1;n-=1;
for(;h<=n&&l<=n+1;h++,l++) {
int r=h;
F(i,h+1,n) if(fabs(f[r][l])<fabs(f[i][l])) r=i;
if(fabs(f[r][l])<eps) {h--;continue;}
if(r!=h) F(i,l,n+1) swap(f[r][i],f[h][i]);
F(i,h+1,n) if(fabs(f[i][l])>eps) {
double t=f[i][l]/f[h][l];
F(j,l,n+1) f[i][j]-=f[h][j]*t;
f[i][l]=0;
}
}
F(i,h,n) if(fabs(f[i][n+1])>eps) return -1;
if(h<n+1) return n+1-h;
C(i,1,n) {
double tmp=f[i][n+1];
F(j,i+1,n) tmp-=ans[j]*f[i][j];
ans[i]=(tmp/f[i][i]);
}
n+=1;
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
d[x]+=1.0,d[y]+=1.0;
s[i]=x,ed[i]=y;
}
for (int i=1;i<n;i++)
{
f[i][i]=1.0;
for (int j=st[i];j;j=e[j].next)
if (e[j].to!=n)
f[i][e[j].to]=-1/d[e[j].to];
}
f[1][n]=1;
gauss();
for (int i=1;i<=m;i++)
E[i]=ans[s[i]]/d[s[i]]+ans[ed[i]]/d[ed[i]];
sort(E+1,E+m+1);
for (int i=1;i<=m;i++)
sum+=E[i]*(m-i+1.0);
printf("%.3lf",sum);
return 0;
}
[luogu3232 HNOI2013] 游走 (高斯消元 期望)的更多相关文章
- Luogu3232 HNOI2013 游走 高斯消元、期望、贪心
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- BZOJ3143:[HNOI2013]游走(高斯消元)
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- [HNOI2013][BZOJ3143] 游走 - 高斯消元
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...
- 【BZOJ3143】【HNOI2013】游走 高斯消元
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...
- 【xsy1201】 随机游走 高斯消元
题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...
- HDU2262;Where is the canteen(高斯消元+期望)
传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1 ...
随机推荐
- HDU 5338 ZZX AND PERMUTATIONS 线段树
pid=5338" target="_blank" style="text-decoration:none; color:rgb(45,125,94); bac ...
- jQuery中的closest()和parents()的差别
jQuery中的closest()和parents()的差别 jQuery中closest()和parents()的作用非常类似,都是向上寻找符合选择器条件的元素,可是他们之间有一些细微的差别,官网也 ...
- UVa 10297 - Beavergnaw
题目:假设一个底边与高为D的圆柱切去一部分使得.剩下的中心是底边与高为d的圆柱. 和以他们底面为上下地面的圆锥台,已知切去的体积,求d. 分析:二分,计算几何.圆锥台体积公式:π*(r^2+r*R+R ...
- Leetcode45:Intersection of Two Linked Lists
Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...
- Leetcode 贪心 Best Time to Buy and Sell Stock
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie Best Time to Buy and Sell Stock Total Accepted ...
- 【iOS开发-80】Quartz2D画图简单介绍:直线/圆形/椭圆/方形以及上下文栈管理CGContextSaveGState/CGContextRestoreGState
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvd2Vpc3ViYW8=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...
- Linux中的默认权限与隐藏权限(文件、文件夹)
一个文件(或文件夹)拥有若干个属性.包含(r/w/x)等基本属性,以及是否为文件夹(d)与文件(-)或连接文件(l)等属性.此外,Linux还能够设置其它系统安全属性.使用chattr来设置.以lsa ...
- Camera-hal参数调整
路径: vendor/mediatek/proproetary/custom/mt6735/hal/D1/imgsensor/对应的SENSOR目录 .../D1/flashlight/flash_t ...
- Linux下开启vim高亮
默认是不高亮的. [root@local ~]# vi ~/.vimrc 没有则新建这个文件. 或者修改 [root@local vim74]# vi /etc/vimrc 添加一行. syntax ...
- First Day Python介绍
前言:刚开通的博客,谢谢博客园平台,管理辛苦! Python介绍 Python是一门高级的.面向对象的.解释性.脚本语言. 高级语言:贴近开发者,对应底层语言,底层语言贴近机器:java.C#.php ...