F - Goldbach`s Conjecture kuangbin 基础数论
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Every even integer, greater than 2, can be expressed as the sum of two primes [1].
Now your task is to check whether this conjecture holds for integers up to 107.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).
Output
For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where
1) Both a and b are prime
2) a + b = n
3) a ≤ b
Sample Input
2
6
4
Sample Output
Case 1: 1
Case 2: 1
Hint
- An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 10000001
#define L 31
#define INF 1000000009
#define eps 0.00000001
/*
打表 把所有素数存到一个vector中
然后用一个map保存所有和出现的次数
然后直接找就可以
*/
bool notprime[MAXN];
vector<int> prime; void Init()
{
memset(notprime, false, sizeof(notprime));
notprime[] = true;
for (int i = ; i < MAXN; i++)
{
if (!notprime[i])
{
prime.push_back(i);
for (int j = i + i; j < MAXN; j += i)
notprime[j] = true;
}
}
}
int main()
{
Init();
int T,n;
cin >> T;
for(int cas=;cas<=T;cas++)
{
cin >> n;
vector<int>::iterator p = lower_bound(prime.begin(), prime.end(), n/);
//cout << *p << endl;
int cnt = ;
for (vector<int>::iterator it = prime.begin(); it <= p && *it<=n/; it++)
{
if (!notprime[n - *it])
{
//cout << *it << ' ' << n - *it << endl;
cnt++;
}
}
printf("Case %d: %d\n", cas, cnt);
}
return ;
}
F - Goldbach`s Conjecture kuangbin 基础数论的更多相关文章
- F - Goldbach`s Conjecture 对一个大于2的偶数n,找有多少种方法使两个素数的和为n;保证素数a<=b; a+b==n; a,b都为素数。
/** 题目:F - Goldbach`s Conjecture 链接:https://vjudge.net/contest/154246#problem/F 题意:对一个大于2的偶数n,找有多少种方 ...
- 【LightOJ1259】Goldbach`s Conjecture(数论)
[LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...
- [暑假集训--数论]poj2262 Goldbach's Conjecture
In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in whic ...
- Goldbach`s Conjecture(LightOJ - 1259)【简单数论】【筛法】
Goldbach`s Conjecture(LightOJ - 1259)[简单数论][筛法] 标签: 入门讲座题解 数论 题目描述 Goldbach's conjecture is one of t ...
- Goldbach’s Conjecture(信息学奥赛一本通 1622)
[题目描述] 原题来自:Ulm Local,题面详见:POJ 2262 哥德巴赫猜想:任何大于 44 的偶数都可以拆成两个奇素数之和. 比如: 8=3+5 20=3+17=7+13 42=5+37=1 ...
- Goldbach's Conjecture
Goldbach's Conjecture Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I ...
- Poj 2262 / OpenJudge 2262 Goldbach's Conjecture
1.Link: http://poj.org/problem?id=2262 http://bailian.openjudge.cn/practice/2262 2.Content: Goldbach ...
- poj 2262 Goldbach's Conjecture(素数筛选法)
http://poj.org/problem?id=2262 Goldbach's Conjecture Time Limit: 1000MS Memory Limit: 65536K Total ...
- HDOJ 1397 Goldbach's Conjecture(快速筛选素数法)
Problem Description Goldbach's Conjecture: For any even number n greater than or equal to 4, there e ...
随机推荐
- CF1073C Vasya and Robot
CF题目难度普遍偏高啊-- 一个乱搞的做法.因为代价为最大下标减去最小的下标,那么可以看做一个区间的修改.我们枚举选取的区间的右端点,不难发现满足条件的左端点必然是不降的.那么用一个指针移一下就好了 ...
- $ST表刷题记录$
\(st表的题目不太多\) 我做过的就这些吧. https://www.luogu.org/problemnew/show/P3865 https://www.luogu.org/problemnew ...
- [python] ThreadPoolExecutor线程池
初识 Python中已经有了threading模块,为什么还需要线程池呢,线程池又是什么东西呢?在介绍线程同步的信号量机制的时候,举得例子是爬虫的例子,需要控制同时爬取的线程数,例子中创建了20个线程 ...
- Hibernate 配置双向多对多关联
本文解决问题:Hibernate 中配置项目(Project) 员工(Employee) 双向多对多关联 方案一:直接配置双向多对多 方案二:配置第三个关联类(xml) 将多对多查分开来(形成 ...
- 【PL/SQL】九九乘法口诀表
--输出屏幕信息 SET serveroutput ON; --打印口诀表 DECLARE V_NUMBER1 ); --外层循环变量 V_NUMBER2 ); --内层循环变量 BEGIN .. - ...
- node 第三方包学习
时间格式化 moment var moment = require('moment'); moment().format();
- html5——私有前缀
CSS3的浏览器私有属性前缀是一个浏览器生产商经常使用的一种方式.它暗示该CSS属性或规则尚未成为W3C标准的一部分,像border-radius等属性需要加私有前缀才奏效 1.-webkit-:谷歌 ...
- CSS——tab导航demo
问题总结: 1.ul要比外套div宽度的值大一点 2.ul需要往左移动1px 3.外套的div设置overflow隐藏 解决抖动: 1.li宽度设置98px,padding左右值1px,hover之后 ...
- JS——数组
concat:连接两个或多个数组,返回被连接数组的一个副本. var arr1 = [12, "你好", "哈哈"] var arr2 = [12, " ...
- Json——一般应用
引用命名空间 using Newtonsoft.Json; 序列化类或者类的集合 string jsonData1 = JsonConvert.SerializeObject(p1);//序列化类 s ...