F - Goldbach`s Conjecture kuangbin 基础数论
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Every even integer, greater than 2, can be expressed as the sum of two primes [1].
Now your task is to check whether this conjecture holds for integers up to 107.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).
Output
For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where
1) Both a and b are prime
2) a + b = n
3) a ≤ b
Sample Input
2
6
4
Sample Output
Case 1: 1
Case 2: 1
Hint
- An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 10000001
#define L 31
#define INF 1000000009
#define eps 0.00000001
/*
打表 把所有素数存到一个vector中
然后用一个map保存所有和出现的次数
然后直接找就可以
*/
bool notprime[MAXN];
vector<int> prime; void Init()
{
memset(notprime, false, sizeof(notprime));
notprime[] = true;
for (int i = ; i < MAXN; i++)
{
if (!notprime[i])
{
prime.push_back(i);
for (int j = i + i; j < MAXN; j += i)
notprime[j] = true;
}
}
}
int main()
{
Init();
int T,n;
cin >> T;
for(int cas=;cas<=T;cas++)
{
cin >> n;
vector<int>::iterator p = lower_bound(prime.begin(), prime.end(), n/);
//cout << *p << endl;
int cnt = ;
for (vector<int>::iterator it = prime.begin(); it <= p && *it<=n/; it++)
{
if (!notprime[n - *it])
{
//cout << *it << ' ' << n - *it << endl;
cnt++;
}
}
printf("Case %d: %d\n", cas, cnt);
}
return ;
}
F - Goldbach`s Conjecture kuangbin 基础数论的更多相关文章
- F - Goldbach`s Conjecture 对一个大于2的偶数n,找有多少种方法使两个素数的和为n;保证素数a<=b; a+b==n; a,b都为素数。
/** 题目:F - Goldbach`s Conjecture 链接:https://vjudge.net/contest/154246#problem/F 题意:对一个大于2的偶数n,找有多少种方 ...
- 【LightOJ1259】Goldbach`s Conjecture(数论)
[LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...
- [暑假集训--数论]poj2262 Goldbach's Conjecture
In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in whic ...
- Goldbach`s Conjecture(LightOJ - 1259)【简单数论】【筛法】
Goldbach`s Conjecture(LightOJ - 1259)[简单数论][筛法] 标签: 入门讲座题解 数论 题目描述 Goldbach's conjecture is one of t ...
- Goldbach’s Conjecture(信息学奥赛一本通 1622)
[题目描述] 原题来自:Ulm Local,题面详见:POJ 2262 哥德巴赫猜想:任何大于 44 的偶数都可以拆成两个奇素数之和. 比如: 8=3+5 20=3+17=7+13 42=5+37=1 ...
- Goldbach's Conjecture
Goldbach's Conjecture Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I ...
- Poj 2262 / OpenJudge 2262 Goldbach's Conjecture
1.Link: http://poj.org/problem?id=2262 http://bailian.openjudge.cn/practice/2262 2.Content: Goldbach ...
- poj 2262 Goldbach's Conjecture(素数筛选法)
http://poj.org/problem?id=2262 Goldbach's Conjecture Time Limit: 1000MS Memory Limit: 65536K Total ...
- HDOJ 1397 Goldbach's Conjecture(快速筛选素数法)
Problem Description Goldbach's Conjecture: For any even number n greater than or equal to 4, there e ...
随机推荐
- vs打开wixproj后缀文件
1.在正常情况下vs是无法打开wixproj工程的,能打开也只能是以记事本方式打开该文件本身 2.所以此时需要下载wixtool,安装后即可打开上述类型文件 3.最好也安装好vs对应版本的扩展包 4. ...
- androd基础入门---1环境
1.项目结构特性 2.模拟器设置 3.编译器的下载 直接点击运行即可
- Speed Limit
http://poj.org/problem?id=2017 #include<stdio.h> int main() { int n,mile,hour; ) { ,h = ; whil ...
- [App Store Connect帮助]三、管理 App 和版本(2.1)输入 App 信息:查看和编辑 App 信息
在您添加 App 至您的帐户后,您也可以在“我的 App”部分查看和编辑 App 信息和平台版本信息. 在输入 App 信息前,请检查必填项.可本地化和可编辑属性.您在上传构建版本或提交您的 App ...
- [Swift通天遁地]二、表格表单-(10)快速添加日期选择/多选/动作表单/地图等自定义表单
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- linux 查看 cpu
如何获得CPU的详细信息: linux命令:cat /proc/cpuinfo 用命令判断几个物理CPU,几个核等: 逻辑CPU个数:# cat /proc/cpuinfo | grep " ...
- BZOJ 3473
思路: CF原题 ZYF有题解 O(nlog^2n) //By SiriusRen #include <bits/stdc++.h> using namespace std; ; ]; i ...
- Ubuntu下搭建repo服务器(二): 配置git-daemon-run
git-daemon-run实际是一个脚本管理工具,用来启动git-daemon. 1 安装git-daemon-run(A端) apt-get install git-daemon-run 2. 配 ...
- [转]linux下logrotate 配置和理解
转自:http://blog.csdn.net/cjwid/article/details/1690101 对于Linux 的系统安全来说,日志文件是极其重要的工具.系统管理员可以使用logrotat ...
- Js打开QQ聊天对话窗口
function openQQ() { var qq = $(this).attr('data-qq');//获取qq号 window.open('http://wpa.qq.com/msgrd?v= ...