线段树合并(【POI2011】ROT-Tree Rotations)
线段树合并(【POI2011】ROT-Tree Rotations)
题意
现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有nn个叶子节点,满足这些权值为1…n1…n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照前序遍历序写出来,逆序对个数最少。
解法
我们对每一个叶子节点建立一颗权值线段树,然后,我们考虑将两个叶子节点上的线段树合并起来,然后我们考虑逆序对的个数。
如果我们将左儿子的线段树放在前面,则产生的逆序对数为左儿子右边的sum * 右儿子左边的sum,反之同理。然后我们每次合并求出这两个之中的最小值加入ans中就好了。
代码
令我感到神奇的是,如果我们将dfs中的两句判断放在外面,常数为原来的3倍,如果不开O2就会TLE。
~~ 可我明明打的跟别人一样的代码,别人不开O2都只要300ms。自带常数型选手的悲哀。╮(╯﹏╰)╭ ~~
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cctype>
#define INF 2139062143
#define MAX 0x7ffffffffffffff
#define del(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
template<typename T>
inline void read(T&x)
{
x=0;T k=1;char c=getchar();
while(!isdigit(c)){if(c=='-')k=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}x*=k;
}
const int maxn=8000000+5;
struct node{
int lc,rc,sum;
node(int lc=0,int rc=0,int sum=0):lc(lc),rc(rc),sum(sum){}
}T[maxn*4];
int root[maxn];
int a[maxn];
int sz;
ll ans1,ans2;
void build(int x){
read(a[x]);
if(a[x]) return;
T[x].lc=++sz;build(T[x].lc);
T[x].rc=++sz;build(T[x].rc);
}
void updata(int l,int r,int pos,int val,int &x){
if(!x) x=++sz;
T[x].sum+=val;
if(l==r) return;
int mid=(l+r)/2;
if(pos<=mid) updata(l,mid,pos,val,T[x].lc);
else updata(mid+1,r,pos,val,T[x].rc);
}
int Merge(int x,int y){
if(!x||!y) return x+y;
ans1+=1ll*T[T[x].lc].sum*T[T[y].rc].sum;
ans2+=1ll*T[T[x].rc].sum*T[T[y].lc].sum;
T[x].lc=Merge(T[x].lc,T[y].lc);
T[x].rc=Merge(T[x].rc,T[y].rc);
T[x].sum=T[T[x].lc].sum+T[T[x].rc].sum;
return x;
}
ll ans=0;
void dfs(int x){
//若为叶子结点,往下递归会TLE???
if(!a[x]){
if(T[x].lc) dfs(T[x].lc);
if(T[x].rc) dfs(T[x].rc);
ans1=0;ans2=0;
root[x]=Merge(root[T[x].lc],root[T[x].rc]);
ans+=1ll*min(ans1,ans2);
}
}
int n;
int main()
{
read(n);
build(sz=1);
for(int i=1;i<=sz;i++)
if(a[i])
updata(1,n,a[i],1,root[i]);
dfs(1);
printf("%lld\n",ans);
return 0;
}
线段树合并(【POI2011】ROT-Tree Rotations)的更多相关文章
- bzoj3307雨天的尾巴(权值线段树合并/DSU on tree)
题目大意: 一颗树,想要在树链上添加同一物品,问最后每个点上哪个物品最多. 解题思路: 1.线段树合并 假如说物品数量少到可以暴力添加,且树点极少,我们怎么做. 首先在一个树节点上标记出哪些物品有多少 ...
- CF600E Lomsat gelral——线段树合并/dsu on tree
题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...
- 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并
[BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...
- 【bzoj2212】[Poi2011]Tree Rotations 权值线段树合并
原文地址:http://www.cnblogs.com/GXZlegend/p/6826614.html 题目描述 Byteasar the gardener is growing a rare tr ...
- [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】
题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...
- bzoj2212[Poi2011]Tree Rotations [线段树合并]
题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...
- 【BZOJ2212】[POI2011]Tree Rotations (线段树合并)
题解: 傻逼题 启发式合并线段树里面查$nlog^2$ 线段树合并顺便维护一下$nlogn$ 注意是叶子为n 总结点2n 代码: #include <bits/stdc++.h> usin ...
- BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对
原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...
- bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
随机推荐
- xx-net安装配置
同学们,有没有因为不会FQ而痛苦?本小白就蛋疼了很久,今天终于把xx-netFQ工具给配置好了,拿出来和大家分享下. 首先,需要先下载xx-net,地址为:https://github.com/XX- ...
- [tyvj-1391]走廊泼水节 最小生成树
做克鲁斯卡尔的时候维护一个并查集即可. #include <iostream> #include <cstdio> #include <cstring> #incl ...
- Redis 报错:MISCONF Redis is configured to save RDB snapshots
MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on disk. Com ...
- Ubuntu双系统后时间不对解决方案
先在ubuntu下更新一下时间,确保时间无误 sudo apt install ntpdate sudo ntpdate time.windows.com 然后将时间更新到硬件上 sudo hwclo ...
- ajax提交数据遇到400异常,原因及解决方案
开发中遇到的问题, ajax的URL写的正确但是确无法正常跳转, 开发者模式下显示请求400异常. 前后台代码如下 ------------------------------------------ ...
- [SharePoint2010开发入门经典]创建你的第一个SPS2010程序
本章概要: 1.创建一个解决方案,使他能读写数据从列表中,使用服务器端对象模型和可视的web部件 2.使用VS2010构建部署解决方案 3.使用图标web部件渲染列表数据 4.在一个解决方案中集成不同 ...
- Photon + Unity3D 线上游戏开发 学习笔记(一)
大家好. 我也是学习Photon + unity3D 的新手 有什么说错的地方大家见谅哈. 我的开发环境是 unity3D 4.1.3 , Visual Studio 是2010 版本号的 p ...
- Android之应用开发基础
Android应用开发基础 英文地址:http://developer.android.com/guide/components/fundamentals.html 本人英语水平不高,如有翻译不当请指 ...
- Unity5.1 新的网络引擎UNET(七) UNET 单人游戏转换为多人
单人游戏转换为多人 孙广东 2015.7.12 本文档描写叙述将单人游戏转换为使用新的网络系统的多人游戏的步骤.这里描写叙述的过程是简化,对于一个真正的游戏事实上须要更高级别版本号的实际 ...
- CGContext含义
代码 含义 CGContextRef context = UIGraphicsGetCurrentContext(); 设置上下文 CGContextMoveToPoint 开始画线 CGContex ...