洛谷P1586 四方定理
题目描述
四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32 和25=5^{2}25=52 。给定的正整数nn ,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32 和25=3^{2}+4^{2}25=32+42 视为一种方案。
输入输出格式
输入格式:
第一行为正整数tt (t\le 100t≤100 ),接下来tt 行,每行一个正整数nn (n\le 32768n≤32768 )。
输出格式:
对于每个正整数nn ,输出方案总数。
输入输出样例
1
2003
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
const int MAXN=1e5+;
int dp[][MAXN];
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
dp[][]=;
for(register int i=;i<=;i++)
for(register int j=;j<=;j++)
for(register int k=;k<=;k++)
if(i*i<=k)
dp[j][k]+=dp[j-][k-i*i];
int T;
scanf("%d",&T);
while(T--)
{
int a;
scanf("%d",&a);
printf("%d\n",dp[][a]+dp[][a]+dp[][a]+dp[][a]);
}
return ;
}
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
const int MAXN=1e6+;
int mul[MAXN],dp[MAXN];
int ans[MAXN];
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
int N=;
for(int i=;i<=N;i++) mul[i]=i*i;
for(int i=;i<=N;i++) ans[ mul[i] ] ++;
for(int i=;i<=N;i++)
for(int j=i;j<=N;j++)
ans[ mul[i]+mul[j] ] ++;
for(int i=;i<=N;i++)
for(int j=i;j<=N;j++)
for(int k=j;k<=N;k++)
ans[ mul[i]+mul[j]+mul[k] ] ++;
for(int i=;i<=N;i++)
for(int j=i;j<=N;j++)
for(int k=j;k<=N;k++)
for(int l=k;l<=N;l++)
ans[ mul[i]+mul[j]+mul[k]+mul[l] ]++;
int T;
scanf("%d",&T);
while(T--)
{
int a;
scanf("%d",&a);
printf("%d\n",ans[a]);
} return ;
}
洛谷P1586 四方定理的更多相关文章
- 洛谷——P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...
- 洛谷 P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+2 ...
- 洛谷p1586四方定理题解
题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...
- P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷 P3834 卢卡斯定理 题解
题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...
- 【Luogu】P1586四方定理(DP)
题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...
- luogu P1586 四方定理(背包)
题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
随机推荐
- rescan-scsi-bus.sh linux扫盘 脚本
[root@ftp:/home/tools/shell] > yum install sg3_utils* Loaded plugins: fastestmirror Repository ba ...
- 响应http报文中的Date属性与cookie过期时间的关系
今天在測试.net时,发现一个莫名其妙的问题:cookie老是保存不到浏览器端; 经过细致的比对成功与不成功的报文,居然无意中发现好像Date与它有关系,这太让我意想不到了,从来不知道cookie保存 ...
- 安装xcode6 beta 后调试出现Unable to boot the iOS Simulator以及编译苹果官方Swift的demo报错failed with exit code 1的解决的方法
苹果昨天公布新语言Swift(雨燕),须要安装xcode6 以及mac os 系统为10.9以上. (xcode6 beta 可在官方下载.须要登录开发人员账号:mac os 系统直接更新就可以.在此 ...
- 轻松学习JavaScript二十二:DOM编程学习之节点操作
DOM编程不只能够查找三种节点,也能够操作节点.那就是创建,插入,删除.替换和复制节点.先来看节点 操作方法: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...
- iOS 时间类经常用法
//当前日前日期 NSDate *today = [NSDate date]; //时区 NSTimeZone *zone = [NSTimeZone systemTimeZone]; //设置间隔 ...
- nyoj--116--士兵杀敌(二)(树状数组)
士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常想知 ...
- 【DNN 系列】 添加模块后不显示
添加模块后不显示分为几个原因 1.检查.dnn文件是否填写正确,要和对应的页面文件对应上 我有一步是这这个名称地方我填上了 就不显示了.这里需要注意,VIEW 的名城是不需要写的 2.重写文件 实体操 ...
- SQL 循环30日
循环30日的统计 大概格式是 with Date as ( select cast(DATEADD(mm, DATEDIFF(mm,,getdate()), ) as datetime) Date u ...
- RecordAccumulator 1
介绍 前面讲过producer会将数据保存在RecordAccumulator中,并通过Sender发送数据.RecordAccumulator 就相当于一个队列保存着那些准备发送到server的数据 ...
- PostgreSQL数据库常用脚本-初始化、备份、恢复推荐脚本
公司最近开始逐步推广使用PostgreSQL,为方便开发人员和实施人员操作,特整理数据库初始化.备份.恢复的推荐脚本如下: 1. 连接数据库 psql -h 127.0.0.1 -p 1921 -U ...