Crowd

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1287    Accepted Submission(s): 290

Problem Description
City F in the southern China is preparing lanterns festival celebration along the streets to celebrate the festival. 
Since frequent accidents had happened last year when the citizens went out to admire the colorful lanterns, City F is planning to develop a system to calculate the degree of congestion of the intersection of two streets. 
The map of City F is organized in an N×N grid (N north-south streets and N west-east street). For each intersection of streets, we define a density value for the crowd on the intersection. 
Initially, the density value of every intersection is zero. As time goes by, the density values may change frequently. A set of cameras with new graphical recognition technology can calculate the density value of the intersection easily in a short time.
But the administrator of the police office is planning to develop a system to calculate the degree of congestion. For some consideration, they come up with a conception called "k-dimension congestion degree". The "k-dimension congestion degree" of intersection (x0,y0) is represented as "c(x0,y0,k)", and it can be calculated by the formula below:

Here, d(x,y) stands for the density value on intersection (x,y) and (x,y) must be in the N×N grid. The formula means that all the intersections in the range of manhattan distance k from (x0,y0) effect the k-dimension congestion degree of (x0,y0) equally, so we just simply sum them up to get the k-dimension congestion degree of (x0,y0). 
The figure below shows a 7×7 grid, and it shows that if you want to get the 2-dimension congestion degree of intersection (4,2),you should sum up the density values of all marked intersections.
 
Input
These are multiple test cases. 
Each test case begins with a line with two integers N, M, meaning that the city is an N×N grid and there will be M queries or events as time goes by. (1 ≤ N ≤10 000, 1 ≤ M ≤ 80 000) Then M lines follow. Each line indicates a query or an event which is given in form of (p, x, y, z), here p = 1 or 2, 1 ≤ x ≤ N, 1 ≤ y ≤ N. 
The meaning of different p is shown below.
1. p = 1 the value of d(x,y) is increased by z, here -100 ≤ z ≤ 100.
2. p = 2 query the value of c(x,y,z), here 0 ≤ z ≤ 2N-1.
Input is terminated by N=0.
 
Output
For each query, output the value for c(x,y,z) in a line.
 
Sample Input
8 5
1 8 8 1
1 1 1 -2
2 5 5 6
1 5 5 3
2 2 3 9
3 2
1 3 2 -9
2 3 2 0
0
 
Sample Output
1
1
-9
 
Source
 
解题:隔壁老王对我说,这个曼哈顿距离啊覆盖的区域旋转45度后就是一个矩形区域,既然是矩形区域,范围还那么大,其实可以更大的,只是内存真抠门。。。
 
上吧,CDQ
 
 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = ;
struct QU {
int x1,x2,y,id,f;
QU(int a = ,int b = ,int c = ,int d = ,int e = ) {
x1 = a;
x2 = b;
y = c;
id = d;
f = e;
}
bool operator<(const QU &t)const {
return y < t.y;
}
} Q[maxn],A[maxn],B[maxn];
LL C[maxn],ans[maxn];
void add(int i,int val) {
while(i < maxn) {
C[i] += val;
i += i&-i;
}
}
LL sum(int i,LL ret = ) {
while(i > ) {
ret += C[i];
i -= i&-i;
}
return ret;
}
void cdq(int L,int R) {
if(R <= L) return;
int mid = (L + R)>>;
cdq(L,mid);
cdq(mid+,R);
int a = ,b = ,j = ;
for(int i = L; i <= mid; ++i)
if(Q[i].id == -) A[a++] = Q[i];
for(int i = mid + ; i <= R; ++i)
if(Q[i].id != -) B[b++] = Q[i];
sort(A,A + a);
sort(B,B + b);
for(int i = ; i < b; ++i) {
for(; j < a && A[j].y <= B[i].y; ++j) add(A[j].x1,A[j].f);
ans[B[i].id] += B[i].f*sum(B[i].x2);
ans[B[i].id] -= B[i].f*sum(B[i].x1);
}
for(int i = ; i < j; ++i) add(A[i].x1,-A[i].f);
}
int main() {
int n,m,op,x,y,z,tot,ask;
while(scanf("%d",&n),n) {
scanf("%d",&m);
ask = tot = ;
memset(ans,,sizeof ans);
while(m--) {
scanf("%d%d%d%d",&op,&x,&y,&z);
if(op == ) Q[tot++] = QU(x + y,,y - x,-,z);
else {
int cx = x + y;
int cy = y - x;
int x1 = cx - z;
int x2 = cx + z;
int y1 = cy - z;
int y2 = cy + z;
Q[tot++] = QU(x1-,x2,y2,ask,);
Q[tot++] = QU(x1-,x2,y1-,ask++,-);
}
}
cdq(,tot-);
for(int i = ; i < ask; ++i)
printf("%I64d\n",ans[i]);
}
return ;
}

HDU 4456 Crowd的更多相关文章

  1. cdq分治(hdu 5618 Jam's problem again[陌上花开]、CQOI 2011 动态逆序对、hdu 4742 Pinball Game、hdu 4456 Crowd、[HEOI2016/TJOI2016]序列、[NOI2007]货币兑换 )

    hdu 5618 Jam's problem again #include <bits/stdc++.h> #define MAXN 100010 using namespace std; ...

  2. 【 HDU - 4456 】Crowd (二维树状数组、cdq分治)

    BUPT2017 wintertraining(15) #5A HDU 4456 题意 给你一个n行n列的格子,一开始每个格子值都是0.有M个操作,p=1为第一种操作,给格子(x,y)增加z.p=2为 ...

  3. HDU 4456(二维树状数组+坐标转换)

    题目链接:Problem - 4456 看别人叙述看的心烦,于是我自己画了一张图. 上图. 上代码 #include <iostream> #include <cstdio> ...

  4. HDU - 4456 cdq

    题意:给一个矩阵,两种操作1:修改单点的权值,2:查询和某个点曼哈顿距离小于r点的权值和 题解:先旋转坐标轴,(x,y)->(x-y,x+y)然后就变成了cdq分治裸题,子矩阵和和单点修改一维时 ...

  5. hdu 4815 Little Tiger vs. Deep Monkey(01背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=4815 Description A crowd of little animals is visiting a m ...

  6. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  7. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  8. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  9. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. Qt为啥从4.8直接就跳到5.3了呢?这不科学吧

    http://qt-project.org/downloads Qt 5.3 Select the file according to your operating system from the l ...

  2. write data to xml

    public class Student { public int Id { get; set; } public string FirstName { get; set; } public stri ...

  3. poj 2763(在线LCA+树状数组)

    Housewife Wind After their royal wedding, Jiajia and Wind hid away in XX Village, to enjoy their ord ...

  4. Codeforces--598A--Tricky Sum(数学)

     Tricky Sum Tricky SumCrawling in process... Crawling failed Time Limit:1000MS     Memory Limit:26 ...

  5. K-means algorithm----PRML读书笔记

    The K-means algorithm is based on the use of squared Euclidean distance as the measure of  dissimila ...

  6. [Apple开发者帐户帮助]三、创建证书(2)创建开发者ID证书

    您可以使用开发人员帐户或Xcode 创建最多五个开发者ID应用程序证书和最多五个开发人员ID安装程序证书.(要在Xcode中创建开发者ID证书,请转到Xcode帮助中的管理签名证书.) 所需角色:帐户 ...

  7. mybatis的二级缓存

    在mybatis主配置文件里configuration标签里添加 <settings> <setting name="cacheEnabled" value=&q ...

  8. 多线程通信(wait/notify)

    线程通信概念:线程是操作系统中独立的个体,但这些个体如果不经过特殊的处理就不能成为一个整体,线程间的通信就成为整体的必用方式之一.当线程存在通信指挥,系统间的交互性会更强大,在提高CPU利用率的同时就 ...

  9. 前端常见面试题总结part2

    今天总结了几道,感觉非常有意思的题,有感兴趣的可以看下,有疑问请留言~ (答案在最后) 考察自执行函数的this指向 审题要细心 var n = 2, obj = { n:2, fn:(functio ...

  10. BZOJ 4514 费用流

    思路: 懒得写了 http://blog.csdn.net/werkeytom_ftd/article/details/51277482 //By SiriusRen #include <que ...