等差子序列 bzoj-2124

题目大意:给定一个1~n的排列,问是否存在3个及以上的位置上的数构成连续的等差子序列。

注释:$1\le n\le 10^4$。

想法:这题就相当于是否存在3个数i,j,k,a[i]表示i位置上的数,使得:i<j<k且a[k]-a[j]=a[j]-a[i]。

引理1:一个满足条件的序列,一定是x-a,x,x+a的形式。

证明:滚。

引理2:两个数x和y,如果y不在x之前出现,那么y一定在x之后出现。

证明:因为是1~n的排列,所以y必然出现,证毕。

引理3:如果存在2个数,x出现了,y出现了,2*y-x没出现,那么一定存在满足条件的解。

证明:由引理2,显然。

那么,我们对于当前桶维护权值线段树,此时:假设当前指针p在(n+1)>>1左侧,如果1~2*p-1在桶上构成的01字符串不是关于p回文的(此处p处桶已经存在),那么说明两个位置关于p对称且一个为1,一个为0。那么,为0的位置有引理3必定会在之后的某一个位置出现,这是一定是存在满足条件的序列的。换句话说,我们只需要判断每次枚举到的数在桶上的位置左右在长度极大的情况下是不是关于该位置回文的。这时,我们只需要对于桶内的每一个点维护向前、向后的hash前(后)缀和,O(1)判断即可。那么,我们如何更新呢?我们发现,当前位置有0变成1,只会使得小于这个数的后缀和和大于这个数的前缀和的hash值发生变化。那,变化了多少呢?假设当前位置是p,hash的增量是base,显然后面的数每个位置的hash值都会增加$base^{p-1}$,前面的数的后缀和都会增加$base^{n-p}$,而这个过程可以用线段树在log的时间内维护。每次就是区间加,和单点查询,复杂度是O(nlogn)。

最后,附上丑陋的代码... ...

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 100010
#define lson pos<<1
#define rson pos<<1|1
using namespace std;
typedef unsigned long long ull;
const ull base=233;
int cases,n,a[N];
ull hash1[N<<2],hash2[N<<2],p[N];
void fix(int pos,int l,int r,int x)
{
if(l==r)
{
hash1[pos]=hash2[pos]=base;
return;
}
int mid=(l+r)>>1;
if(x<=mid) fix(lson,l,mid,x);
else fix(rson,mid+1,r,x);
hash1[pos]=hash1[lson]*p[r-mid]+hash1[rson];
hash2[pos]=hash2[rson]*p[mid-l+1]+hash2[lson];
}
ull gethash(int pos,int l,int r,int x,int y,int v)
{
if(x<=l&&r<=y)
{
if(v==1)return hash1[pos];
return hash2[pos];
}
int mid=(l+r)>>1;
if(y<=mid) return gethash(lson,l,mid,x,y,v);
if(x>mid) return gethash(rson,mid+1,r,x,y,v);
ull lre=gethash(lson,l,mid,x,y,v),rre=gethash(rson,mid+1,r,x,y,v);
if(v==1)return lre*p[min(y,r)-mid]+rre;
return rre*p[mid-max(x,l)+1]+lre;
}
int main()
{
cin >> cases ; p[0]=1;
for(int i=1;i<=10000;i++) p[i]=p[i-1]*base;
while(cases--)
{
memset(hash1,0,sizeof hash1);
memset(hash2,0,sizeof hash2);
memset(a,0,sizeof a);
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
int flag=0;
for(int len,i=1;i<=n;++i)
{
fix(1,1,n,a[i]);
len=min(a[i],n-a[i]+1);
if(gethash(1,1,n,a[i]-len+1,a[i],1)!=gethash(1,1,n,a[i],a[i]+len-1,2))
{
flag=1;
break;
}
}
if(flag)puts("Y");
else puts("N");
}
return 0;
}

小结:线段树真tm牛逼,hash更牛逼... ...

[bzoj2124]等差子序列_线段树_hash的更多相关文章

  1. BZOJ_2124_等差子序列_线段树+Hash

    BZOJ_2124_等差子序列_线段树+Hash Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pL ...

  2. dutacm.club_1094_等差区间_(线段树)(RMQ算法)

    1094: 等差区间 Time Limit:5000/3000 MS (Java/Others)   Memory Limit:163840/131072 KB (Java/Others)Total ...

  3. bzoj2124: 等差子序列线段树+hash

    bzoj2124: 等差子序列线段树+hash 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2124 思路 找大于3的等差数列其实就是找等于 ...

  4. [BZOJ2124]等差子序列/[CF452F]Permutation

    [BZOJ2124]等差子序列/[CF452F]Permutation 题目大意: 一个\(1\sim n\)的排列\(A_{1\sim n}\),询问是否存在\(i,j(i<j)\),使得\( ...

  5. BZOJ_2957_楼房重建_线段树

    BZOJ_2957_楼房重建_线段树 Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多 ...

  6. BZOJ_4636_蒟蒻的数列_线段树+动态开点

    BZOJ_4636_蒟蒻的数列_线段树+动态开点 Description 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个数列,初始值均为0,他进行N次操作,每次将 ...

  7. BZOJ_3252_攻略_线段树+dfs序

    BZOJ_3252_攻略_线段树+dfs序 Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏< ...

  8. BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针

    BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间, ...

  9. BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心

    BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心 Description 在计算机中,CPU只能和高速缓存Cache直接交换数据.当所需的内存单元不在Cache中时,则需要从主存里把数 ...

随机推荐

  1. UESTC--1252--24点游戏(dfs)

     24点游戏 Time Limit: 1000MS   Memory Limit: 65535KB   64bit IO Format: %lld & %llu Submit Status ...

  2. poj--2031--Building a Space Station(prime)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6635   Accepte ...

  3. heap堆&&priority_queue优先队列

    堆(heap)不是stl中的东西...它分为 max heap 和min heap. 但我不想用这些,而是采用了priority_queue,优先队列,定义在queue中.顾名思义,它的作用就是无论怎 ...

  4. [Apple开发者帐户帮助]五、管理标识符(2)启用应用服务

    您可以在证书,标识符和配置文件中查看和启用App ID的服务.包含已修改的App ID的供应配置文件将变为无效.您需要重新生成使用该App ID的配置文件. 注意:要为应用程序完全配置服务,请在Xco ...

  5. SyntaxError: EOL while scanning string literal的解决

    2281 python中字符串的最后一个字符是斜杠会导致出错:SyntaxError: EOL while scanning string literal [背景] Python 2.7.2 中想要通 ...

  6. Mysql 时间、字符串、时间戳互转

    时间转字符串 select date_format(now(),'%Y-%m-%d'); 时间转时间戳 select UNIX_TIMESTAMP(now()); 时间戳转时间 ) :: 时间戳转字符 ...

  7. Android 应用安装成功之后删除apk文件

    问题: 在应用开发中遇到需要这样的需求:在用户下载我们的应用安装之后删除安装包. 解决: android会在每个外界操作APK的动作之后发出系统级别的广播,过滤器名称: android.intent. ...

  8. 酷派 5267 刷入第三方 recovery教程 刷机 ROOT

    准备工作: 一台电脑: 酷派5267手机: 一张内存卡: 下载好刷机资料:  http://pan.baidu.com/s/1i4LoVh7 备用下载: http://pan.baidu.com/s/ ...

  9. Css打造一个简单的静态七巧板

    偶然在微博上看到用css写一个七巧板,正好也有一些源代码,于是就试着敲了敲. 主要是利用了css3的transform,实现平移,旋转,变形,直接用看到的代码敲出来之后有些问题,因为宽度上下面绿色的三 ...

  10. Css小动画

    html页面: <!DOCTYPE html><html lang="en"><head> <meta charset="UTF ...