Partition

Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 954 Accepted Submission(s): 545
Problem Description
How many ways can the numbers 1 to 15 be added together to make 15? The technical term for what you are asking is the "number of partition" which is often called P(n). A partition of n is a collection of positive integers (not necessarily
distinct) whose sum equals n.



Now, I will give you a number n, and please tell me P(n) mod 1000000007.
Input
The first line contains a number T(1 ≤ T ≤ 100), which is the number of the case number. The next T lines, each line contains a number n(1 ≤ n ≤ 105) you need to consider.


Output
For each n, output P(n) in a single line.
Sample Input
4
5
11
15
19
Sample Output
7
56
176
490
Source


题意:问一个数n能被拆分成多少种方法

首先你要知道母函数+然后你要知道五边形数定理;

设第n个五边形数为,那么,即序列为:1,
5, 12, 22, 35, 51, 70, ...

相应图形例如以下:

设五边形数的生成函数为。那么有:

以上是五边形数的情况。以下是关于五边形数定理的内容:

五边形数定理是一个由欧拉发现的数学定理。描写叙述欧拉函数展开式的特性。欧拉函数的展开式例如以下:

欧拉函数展开后,有些次方项被消去。仅仅留下次方项为1, 2, 5, 7, 12, ...的项次,留下来的次方恰为广义五边形数。

五边形数和切割函数的关系

欧拉函数的倒数是切割函数的母函数。亦即:

   当中为k的切割函数。

上式配合五边形数定理,有:

 
在 n>0 时,等式右側的系数均为0,比較等式二側的系数,可得
 

因此可得到切割函数p(n)的递归式:

比如n=10时,有:

所以,通过上面递归式,我们能够非常高速地计算n的整数划分方案数p(n)了。

详见维基百科:https://zh.wikipedia.org/wiki/%E4%BA%94%E8%A7%92%E6%95%B0#.E5.BB.A3.E7.BE.A9.E4.BA.94.E9.82.8A.E5.BD.A2.E6.95.B8 或 https://zh.wikipedia.org/wiki/%E4%BA%94%E9%82%8A%E5%BD%A2%E6%95%B8%E5%AE%9A%E7%90%86 


转载请注明出处:http://blog.csdn.net/u010579068 


详见代码:
#include<iostream>
#include<cstdio>
#define NN 100005
#define LL __int64
#define mod 1000000007 using namespace std;
LL wu[NN],pa[NN];
void init()
{
pa[0]=1;
pa[1]=1;
pa[2]=2;
pa[3]=3;
LL ca=0;
for(LL i=1;i<=100000/2;i++)
{
wu[ca++]=i*(3*i-1)/2;
wu[ca++]=i*(3*i+1)/2;
if(wu[ca-1]>100000) break;
}
for(LL i=4;i<=100000;i++)
{
pa[i]=(pa[i-1]+pa[i-2])%mod;
ca=1;
while(wu[2*ca]<=i)
{
if(ca&1)
{
pa[i]=(pa[i]-pa[i-wu[2*ca]])%mod;
pa[i]=(pa[i]%mod+mod)%mod;
if(wu[2*ca+1]<=i)
pa[i]=(pa[i]-pa[i-wu[2*ca+1]])%mod;
pa[i]=(pa[i]%mod+mod)%mod;
}
else
{
pa[i]=(pa[i]+pa[i-wu[2*ca]])%mod;
pa[i]=(pa[i]%mod+mod)%mod;
if(wu[2*ca+1]<=i)
pa[i]=(pa[i]+pa[i-wu[2*ca+1]])%mod;
pa[i]=(pa[i]%mod+mod)%mod;
}
ca++;
}
}
}
int main()
{
int T,n;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
printf("%I64d\n",pa[n]);
}
return 0; }




Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)的更多相关文章

  1. Integer Partition(hdu4658)2013 Multi-University Training Contest 6 整数拆分二

    Integer Partition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...

  2. Partition(hdu4651)2013 Multi-University Training Contest 5

    Partition Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  3. ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków

    ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...

  4. HDU 2018 Multi-University Training Contest 1 Triangle Partition 【YY】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6300 Triangle Partition Time Limit: 2000/1000 MS (Java ...

  5. HDU 4658 Integer Partition (2013多校6 1004题)

    Integer Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. JSU 2013 Summer Individual Ranking Contest - 5

    JSU 2013 Summer Individual Ranking Contest - 5 密码:本套题选题权归JSU所有,需要密码请联系(http://blog.csdn.net/yew1eb). ...

  7. HDU4888 Redraw Beautiful Drawings(2014 Multi-University Training Contest 3)

    Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  8. HDU 2018 Multi-University Training Contest 3 Problem A. Ascending Rating 【单调队列优化】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6319 Problem A. Ascending Rating Time Limit: 10000/500 ...

  9. Ural State University Internal Contest October'2000 Junior Session

    POJ 上的一套水题,哈哈~~~,最后一题很恶心,不想写了~~~ Rope Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7 ...

随机推荐

  1. NSAttributedString编程

    - (void)viewDidLoad {     [super viewDidLoad];          NSMutableAttributedString *attributedString ...

  2. angularjs1-3,工具方法,bootstrap,多个module,引入jquery

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  3. 分析性能瓶颈的视图:v$session_wait

    这是一个寻找性能瓶颈的关键视图.它提供了任何情况下session在数据库中当前正在等待什么(如果session当前什么也没在做,则显示它最后的等待事件).当系统存在性能问题时,本视图可以做为一个起点指 ...

  4. svn插件失效

    安装其他插件后,可能出现SVN插件失效了,在eclipse中完全找不到SVN的任何操作选项,此时可尝试通过以下办法解决: 把eclipse/configuration目录下的org.eclipse.u ...

  5. 6 ZigZig Conversion[M]Z字形变换

    题目 The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows li ...

  6. .NET MVC Dropzone 上传图片

    在nuget控制台输入:Install-Package dropzone @{ Layout = null; } <!DOCTYPE html> <html> <head ...

  7. 服务端 | Nodejs 学习笔记(一)

    Node.js 前言: 2009年面世 nodejs.org 官网 https://www.npmjs.com/ 模块社区 github.com 仓库 stackoverflow.com  问答社区 ...

  8. Android 自定义简单控件--星级评价

    效果图 实现 package com.easypass.carstong.view; import android.content.Context; import android.content.re ...

  9. Excel导入到DataTable ,DataTable导入到Excel

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using NPOI.SS. ...

  10. linux拷贝文件

    linux之cp/scp命令+scp命令详解 2011-03-09 17:27:22|  分类: Linux |  标签:linux  cp  scp  commond   |字号 订阅   名称:c ...