http://acm.hdu.edu.cn/showproblem.php?pid=1576

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6418    Accepted Submission(s): 5075

Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 
Output
对应每组数据输出(A/B)%9973。
 
Sample Input
2
1000 53
87 123456789
 
Sample Output
7922
6060
 
Author
xhd
 
Source
 
膜的性质+逆元

(a/b)mod p=?
定义 c为b在mod p意义下的逆元
=a*c mod p = (a mod p * c mod p)mod p

① exgcd求逆元

 #include <algorithm>
#include <cstdio> using namespace std; const int mod();
int T,n,b,x,y; int exgcd(int a,int b,int &x,int &y)
{
if(!b)
{
x=; y=;
return a;
}
int ret=exgcd(b,a%b,x,y);
int tmp=x; x=y;
y=tmp-a/b*y;
return ret;
} int main()
{
scanf("%d",&T);
for(;T--;)
{
scanf("%d%d",&n,&b);
int gcd=exgcd(b,mod,x,y);
x*=gcd;
x=(x%mod+mod)%mod;
printf("%d\n",(x*n)%mod);
}
return ;
}

② 欧拉定理求逆元

 #include <algorithm>
#include <cstdio> using namespace std; #define LL long long
const int mod();
int T,n,b; LL phi(LL x)
{
LL ret=;
for(LL i=;i*i<=x;i++)
if(x%i==)
{
x/=i;
ret*=i-;
for(;x%i==;)
ret*=i,x/=i;
}
if(x>) ret*=x-;
return ret;
}
LL Q_pow(LL a,LL b)
{
LL ret=,base=a;
for(;b;b>>=)
{
if(&b) ret=(ret*base)%mod;
base=(base*base)%mod;
}
return ret;
} int main()
{
scanf("%d",&T);
for(;T--;)
{
scanf("%d%d",&n,&b);
LL x=Q_pow((LL)b,(LL)phi((LL)mod)-);
x=(x%mod+mod)%mod;
printf("%d\n",(x*n)%mod);
}
return ;
}

HDU——T 1576 A/B的更多相关文章

  1. HDU 1576 (乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...

  2. hdu 1576 A/B (扩展欧几里德简单运用)

    http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Memory Lim ...

  3. hdu 1576 A/B

    原题链接:hdu 1576 A/B 同样是用扩展的欧几里得算法.A = 9973k+n = xB,从而转化为:xB-9973k=n求解x即可. 具体扩展欧几里得算法请参考:hdu 2669 Roman ...

  4. 【HDU 1576】 A/B

    Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1).   Input 数据的 ...

  5. 扩展欧几里得 hdu 1576

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 不知道扩展欧几里得的同学可以参考:https://blog.csdn.net/zhjchengf ...

  6. HDU 1576 A/B(欧几里德算法延伸)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目: Problem Description 要求(A/B)%9973,但由于A很大,我们只 ...

  7. HDU 1576 A/B(扩展欧几里德变形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但因为A非常大,我们仅仅给出n ...

  8. HDU 1576 A/B 数论水题

    http://acm.hdu.edu.cn/showproblem.php?pid=1576 写了个ex_gcd的模板...太蠢导致推了很久的公式 这里推导一下: 因为 1 = BX + 9973Y ...

  9. HDU 1576 A/B (两种解法)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 分析:等式枚举法,由题意可得:, ,代入 ,    得:,把变量 合在一起得: :即满足 为 倍 ...

随机推荐

  1. Android笔记三十四.Service综合实例二

    综合实例2:client訪问远程Service服务 实现:通过一个button来获取远程Service的状态,并显示在两个文本框中. 思路:如果A应用须要与B应用进行通信,调用B应用中的getName ...

  2. Delphi新语法 For ..In

    首先我们要知道哪些类型可以用For In吧,下面就是: for Element in ArrayExpr do Stmt;      数组 for Element in StringExpr do S ...

  3. 2.最详细的WSDD配置文件注释

    https://blog.csdn.net/u011063151/article/details/52590282

  4. KDD 2011 最佳工业论文中机器学习的实践方法-翻译

    作者:黄永刚 Practical machine learning tricks from the KDD 2011 best industry paper 原文链接:http://blog.davi ...

  5. Callback<> and Bind()

    Callback<> and Bind() Introduction The templated base::Callback<> class is a generalized ...

  6. py2exe打包python脚本

    在工作中遇到将python脚本转换成exe可执行程序的需求,通过查询可以使用py2exe来构建满足要求的程序,这里简要说明一下使用步骤. 一.py2exe是一个将python脚本转换成windows上 ...

  7. 再次学习 Iterator 迭代器 与 Generator 生成器

    Iterator : 返回的结果是:{value, done} function chef(foods){ let i = 0; return { next(){ let done = ( i> ...

  8. 如何更新 CentOS 镜像源

    话不多说, 直接上教程. 首先备份/etc/yum.repos.d/CentOS-Base.repo mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.rep ...

  9. Java基础String的方法

    Java基础String的方法 字符串类型写法格式如下: 格式一: String 变量名称; 变量名称=赋值(自定义或传入的变量值); 格式二: String 变量名称=赋值(自定义或传入的变量值); ...

  10. 手把手教你用vue-cli构建一个简单的路由应用

    上一章说道:十分钟上手-搭建vue开发环境(新手教程)https://www.jianshu.com/p/0c6678671635 开发环境搭建好之后,那么开始新添加一些页面,构建最基本的vue项目, ...