https://www.luogu.org/problem/show?pid=2863#sub

题目描述

The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their finest gowns, complete with corsages and new shoes. They know that tonight they will each try to perform the Round Dance.

Only cows can perform the Round Dance which requires a set of ropes and a circular stock tank. To begin, the cows line up around a circular stock tank and number themselves in clockwise order consecutively from 1..N. Each cow faces the tank so she can see the other dancers.

They then acquire a total of M (2 <= M <= 50,000) ropes all of which are distributed to the cows who hold them in their hooves. Each cow hopes to be given one or more ropes to hold in both her left and right hooves; some cows might be disappointed.

约翰的N (2 <= N <= 10,000)只奶牛非常兴奋,因为这是舞会之夜!她们穿上礼服和新鞋子,别 上鲜花,她们要表演圆舞.

只有奶牛才能表演这种圆舞.圆舞需要一些绳索和一个圆形的水池.奶牛们围在池边站好, 顺时针顺序由1到N编号.每只奶牛都面对水池,这样她就能看到其他的每一只奶牛.

为了跳这种圆舞,她们找了 M(2<M< 50000)条绳索.若干只奶牛的蹄上握着绳索的一端, 绳索沿顺时针方绕过水池,另一端则捆在另一些奶牛身上.这样,一些奶牛就可以牵引另一些奶 牛.有的奶牛可能握有很多绳索,也有的奶牛可能一条绳索都没有.

对于一只奶牛,比如说贝茜,她的圆舞跳得是否成功,可以这样检验:沿着她牵引的绳索, 找到她牵引的奶牛,再沿着这只奶牛牵引的绳索,又找到一只被牵引的奶牛,如此下去,若最终 能回到贝茜,则她的圆舞跳得成功,因为这一个环上的奶牛可以逆时针牵引而跳起旋转的圆舞. 如果这样的检验无法完成,那她的圆舞是不成功的.

如果两只成功跳圆舞的奶牛有绳索相连,那她们可以同属一个组合.

给出每一条绳索的描述,请找出,成功跳了圆舞的奶牛有多少个组合?

For the Round Dance to succeed for any given cow (say, Bessie), the ropes that she holds must be configured just right. To know if Bessie's dance is successful, one must examine the set of cows holding the other ends of her ropes (if she has any), along with the cows holding the other ends of any ropes they hold, etc. When Bessie dances clockwise around the tank, she must instantly pull all the other cows in her group around clockwise, too. Likewise,

if she dances the other way, she must instantly pull the entire group counterclockwise (anti-clockwise in British English).

Of course, if the ropes are not properly distributed then a set of cows might not form a proper dance group and thus can not succeed at the Round Dance. One way this happens is when only one rope connects two cows. One cow could pull the other in one direction, but could not pull the other direction (since pushing ropes is well-known to be fruitless). Note that the cows must Dance in lock-step: a dangling cow (perhaps with just one rope) that is eventually pulled along disqualifies a group from properly performing the Round Dance since she is not immediately pulled into lockstep with the rest.

Given the ropes and their distribution to cows, how many groups of cows can properly perform the Round Dance? Note that a set of ropes and cows might wrap many …

输入输出格式

输入格式:

Line 1: Two space-separated integers: N and M

Lines 2..M+1: Each line contains two space-separated integers A and B that describe a rope from cow A to cow B in the clockwise direction.

输出格式:

Line 1: A single line with a single integer that is the number of groups successfully dancing the Round Dance.

输入输出样例

输入样例#1:

5 4
2 4
3 5
1 2
4 1
输出样例#1:

1

说明

Explanation of the sample:

ASCII art for Round Dancing is challenging. Nevertheless, here is a representation of the cows around the stock tank:

       _1___
/**** \
5 /****** 2
/ /**TANK**|
\ \********/
\ \******/ 3
\ 4____/ /
\_______/

Cows 1, 2, and 4 are properly connected and form a complete Round Dance group. Cows 3 and 5 don't have the second rope they'd need to be able to pull both ways, thus they can not properly perform the Round Dance.

tarjan缩点 求缩点后,每个点所包含的原点数>1的点的个数

 #include <algorithm>
#include <cstdio> using namespace std; const int N(+);
int n,m,u,v,ans;
int sumedge,head[N];
struct Edge
{
int from,to,next;
Edge(int from=,int to=,int next=) :
from(from),to(to),next(next) {}
}edge[N]; void ins(int from,int to)
{
edge[++sumedge]=Edge(from,to,head[from]);
head[from]=sumedge;
} int dfn[N],low[N],tim;
int Stack[N],top,instack[N];
int sumcol,col[N],point[N]; void DFS(int now)
{
dfn[now]=low[now]=++tim;
Stack[++top]=now; instack[now]=true;
for(int i=head[now];i;i=edge[i].next)
{
int go=edge[i].to;
if(instack[go]) low[now]=min(low[now],dfn[go]);
else if(!dfn[go])
DFS(go),low[now]=min(low[now],low[go]);
}
if(low[now]==dfn[now])
{
col[now]=++sumcol;
point[sumcol]++;
for(;Stack[top]!=now;top--)
{
point[sumcol]++;
col[Stack[top]]=sumcol;
instack[Stack[top]]=false;
}
instack[now]=false; top--;
}
} int main()
{
scanf("%d%d",&n,&m);
for(;m;m--) scanf("%d%d",&u,&v),ins(u,v);
for(int i=;i<=n;i++) if(!dfn[i]) DFS(i);
for(int i=;i<=sumcol;i++)
if(point[i]>) ans++;
printf("%d\n",ans);
return ;
}

洛谷——P2863 [USACO06JAN]牛的舞会The Cow Prom的更多相关文章

  1. 洛谷 P2863 [USACO06JAN]牛的舞会The Cow Prom

    传送门 题目大意:形成一个环的牛可以跳舞,几个环连在一起是个小组,求几个小组. 题解:tarjian缩点后,求缩的点包含的原来的点数大于1的个数. 代码: #include<iostream&g ...

  2. 洛谷P2863 [USACO06JAN]牛的舞会The Cow Prom

    代码是粘的,庆幸我还能看懂. #include<iostream> #include<cstdio> #include<cmath> #include<alg ...

  3. 洛谷 P2863 [USACO06JAN]牛的舞会The Cow Prom 题解

    每日一题 day11 打卡 Analysis 好久没大Tarjan了,练习练习模板. 只要在Tarjan后扫一遍si数组看是否大于1就好了. #include<iostream> #inc ...

  4. 洛谷 P2863 [USACO06JAN]牛的舞会The Cow Prom(Tarjan)

    一道tarjan的模板水题 在这里还是着重解释一下tarjan的代码 #include<iostream> #include<cstdio> #include<algor ...

  5. 洛谷 P2863 [USACO06JAN]牛的舞会The Cow Prom-强连通分量(Tarjan)

    本来分好组之后,就确定好了每个人要学什么,我去学数据结构啊. 因为前一段时间遇到一道题是用Lca写的,不会,就去学. 然后发现Lca分为在线算法和离线算法,在线算法有含RMQ的ST算法,前面的博客也写 ...

  6. P2863 [USACO06JAN]牛的舞会The Cow Prom

    洛谷——P2863 [USACO06JAN]牛的舞会The Cow Prom 题目描述 The N (2 <= N <= 10,000) cows are so excited: it's ...

  7. bzoj1654 / P2863 [USACO06JAN]牛的舞会The Cow Prom

    P2863 [USACO06JAN]牛的舞会The Cow Prom 求点数$>1$的强连通分量数,裸的Tanjan模板. #include<iostream> #include&l ...

  8. luogu P2863 [USACO06JAN]牛的舞会The Cow Prom |Tarjan

    题目描述 The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their ...

  9. 【luogu P2863 [USACO06JAN]牛的舞会The Cow Prom】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2863 求强连通分量大小>自己单个点的 #include <stack> #include ...

随机推荐

  1. BZOJ 5180 [Baltic2016]Cities(斯坦纳树)

    斯坦纳树的板子题. 斯坦纳树问题是组合优化问题,与最小生成树相似,是最短网络的一种. 最小生成树是在给定的点集和边中寻求最短网络使所有点连通. 而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网 ...

  2. linux软链接与硬链接详解

    软连接 命令: ln -s 原文件 目标文件 特征: 1.相当于windows的快捷方式 2.只是一个符号连接,所以软连接文件大小都很小 3.当运行软连接的时候,会根据连接指向找到真正的文件,然后执行 ...

  3. Vue.js 笔记之 img src

    固定路径(原始html) index.html如下,其中,引号""里面就是图片的路径地址 ```<img src="./assets/1.png"> ...

  4. 原生ajax的请求过程

    原生ajax的请求过程 创建全平台兼容的XMLHttpRequest对象: function getXHR(){ var xhr = null; if(window.XMLHttpRequest) { ...

  5. React基础知识点全解

    •      propTypes.defaultProps 作为 properties 定义,也可以在组件外部通过键值对方式进行设置. •      设置组件初始的 state不支持 getIniti ...

  6. C#-C#6.0新特性

    来自为知笔记(Wiz)

  7. Revolution Platform

    Revolution Platform 黑暗的极权统治现实 异类的处境 独孤的存在 觉者的形成 信仰的确立 信仰的产物 完整的思想理论 反抗与信仰的一致 反抗的超理性的智慧论 反抗的纯理性的方法论 反 ...

  8. hdu-3401-Trade-单调队列优化的DP

    单调队列入门题... dp[i][j]:第i天.手中拥有j个股票时,获得的最大利润. 若第i天不买不卖:dp[i][j]=max(dp[i][j],dp[i-1][j]); 若第i天买         ...

  9. iOS开发之十万个为什么&lt;1&gt;

    郝萌主倾心贡献,尊重作者的劳动成果,请勿转载. 假设文章对您有所帮助.欢迎给作者捐赠,支持郝萌主,捐赠数额任意,重在心意^_^ 我要捐赠: 点击捐赠 Cocos2d-X源代码下载:点我传送 游戏官方下 ...

  10. [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)

    题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...