题目链接:

pid=5317" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5317

Problem Description
Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ?

Please let me explain it to you gradually. For a positive
integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (L≤i<j≤R)

 
Input
There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.

In the next T lines, each line contains L, R which is mentioned above.



All input items are integers.

1<= T <= 1000000

2<=L < R<=1000000
 
Output
For each query。output the answer in a single line. 

See the sample for more details.
 
Sample Input
2
2 3
3 5
 
Sample Output
1
1
 
Source

题意:

一个函数 :f(x)它的值是x的素因子不同的个数;

如:f(2) = 1, f(3) = 1。

当中(L<=i<j<=R),即区间内随意不相等的两个数的最大公约数的最大值;

PS:

由于2*3*5*7*11*13*17 > 1e6!

所以f(x)的值最大为7;

我们先打表求出每一个f(x)的值;

//int s[maxn][10];//前i个F中j的个数

然后再利用前缀和s[r][i] - s[l-1][i]。

求出区间[l, r]的值。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
#define maxn 1000000+7
int prim[maxn];
int s[maxn][10];//前i个F中j的个数
int GCD(int a, int b)
{
if(b==0)
return a;
return GCD(b, a%b);
}
void init()
{
memset(prim, 0, sizeof(prim));
memset(s, 0, sizeof(s));
for(int i = 2; i < maxn; i++)
{
if(prim[i]) continue;
prim[i] = 1;
for(int j = 2; j * i < maxn; j++)
{
prim[j*i]++;//不同素数个数
}
}
s[2][1] = 1;
for(int i = 3; i < maxn; i++)
{
for(int j = 1; j <= 7; j++)
{
s[i][j] = s[i-1][j];
}
s[i][prim[i]]++;
}
}
int main()
{
int t;
int l, r;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&l,&r);
int c[17];
int k = 0;
for(int i = 1; i <= 7; i++)
{
int tt = s[r][i] - s[l-1][i];
if(tt >= 2)//超过两个以上记为2个就可以
{
c[k++] = i;
c[k++] = i;
}
else if(tt == 1)
{
c[k++] = i;
}
}
int maxx = 1;
for(int i = 0; i < k-1; i++)
{
for(int j = i+1; j < k; j++)
{
int tt = GCD(c[i],c[j]);
maxx = max(maxx, tt);
}
}
printf("%d\n",maxx);
}
return 0;
}

HDU 5317 RGCDQ(素数个数 多校2015啊)的更多相关文章

  1. hdu 5317 RGCDQ(前缀和)

    题目链接:hdu 5317 这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R ...

  2. hdu 5317 RGCDQ (2015多校第三场第2题)素数打表+前缀和相减求后缀(DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317 题意:F(x) 表示x的不同质因子的个数结果是求L,R区间中最大的gcd( F(i) , F(j ...

  3. 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  4. HDU 5317 RGCDQ (数论素筛)

    RGCDQ Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  5. ACM学习历程—HDU 5317 RGCDQ (数论)

    Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...

  6. HDU 5294 Tricks Device(多校2015 最大流+最短路啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Problem Description Innocent Wu follows Dumb Zha ...

  7. HDU 5317 RGCDQ

    题意:f(i)表示i的质因子个数,给l和r,问在这一区间内f(i)之间任意两个数最大的最大公倍数是多少. 解法:先用筛法筛素数,在这个过程中计算f(i),因为f(i)不会超过7,所以用一个二维数组统计 ...

  8. HDU 5317 RGCDQ (质数筛法,序列)

    题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2.将100万个数转成他们的f值后变成新的序列seq.接下来T个例子,每个例子一个询 ...

  9. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

随机推荐

  1. 91.生成ini文件并写入和读取ini文件

    写入 WritePrivateProfileStringA("hello money", infx[i].name, money, "1.ini"); 按照字符 ...

  2. 【习题 6-3 UVA - 536】 Tree Recovery

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 递归题 [代码] #include <bits/stdc++.h> using namespace std; const ...

  3. 【2017 Multi-University Training Contest - Team 10 】Monkeys

    [链接]点击打开链接 [题意] 给你一棵n节点的树,现在让你放k个猴子,可以删边,问最少可以剩余几条边,放k个猴子,满足任意一个猴 子至少与一只猴子相连.2<=k<=n<=1e5 [ ...

  4. DB2 概览

    2006:IBM公布DB2.9.将数据库领域带入XML时代.IT建设业已进入SOA(Service-Oriented Architecture)时代.实现SOA.其核心难点是顺畅解决不同应用间的数据交 ...

  5. echarts同一页面四个图表切换的js数据交互

    需求:点击tab页,切换四个不同的图表,ajax向后台请求数据,展示在四个不同的图表中. 其余的就不多说,直接上js代码了 $(function() { $("#heart").o ...

  6. Tomcat基础配置和高级配置

    **********  第一部分 Tomcat基础配置   *********** 一.Apatch Tomcat 在win下配置 大部分转载自:http://blog.csdn.net/liuhao ...

  7. 2019年Angular7——安装搭建路由

    Angular 中文官方:https://www.angular.cn/ 为什么要看Angular?我也不知道,因为公司有个Angular的项目要维护.听说Angular的版本已经到7了.以前没怎么玩 ...

  8. 【Codeforces Round #440 (Div. 2) B】Maximum of Maximums of Minimums

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] k=1的时候就是最小值, k=2的时候,暴力枚举分割点. k=3的时候,最大值肯定能被"独立出来",则直接输出最 ...

  9. AE加载不同数据的方法(GeoDatabase空间数据管理)

    原文 AE加载不同数据的方法(GeoDatabase空间数据管理) GeoDatabase 先看一下GeoDatabase核心结构模型图: 1  工作空间工厂WorkspaceFactory对象 Wo ...

  10. MySQL启动关闭添加到 /etc/init.d/mysqld

      cp /data/mysql/support-files/mysql.server /etc/init.d/mysqld       然后就可以使用此命令启动/关闭 mysql: /etc/ini ...