从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化
从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化
神经网络在训练过程中,为应对过拟合问题,可以采用正则化方法(regularization),一种常用的正则化方法是L2正则化.
- 神经网络中L2正则化的定义形式如下:
\[ J(W,b)=\frac{1}{m}\sum_{i=1}^{m}l(y^{(i)},\hat y^{(i)})+\frac{\lambda}{2m}\sum_{i=1}^{m}||W^{(i)}||_F^2\]
其中,J(W,b)为正则化下的cost function,等式右边第一项为未使用正则化的损失函数,第二项为正则化项,因为应用的是矩阵的F范数,所以称为L2 regularization. - 下面从有约束条件下的凸优化角度进行分析
上面的等式可以等价为凸优化问题:\(c(W,b)=\frac{1}{m}\sum_{i=1}^{m}l(y^{(i)},\hat y^{(i)})\),约束条件为\(\sum_{i=1}^{m}||W^{(i)}||_F^2\leq R\),构造如下拉格朗日函数:
\[L(W,b,\lambda)=c(W,b)+\frac{\lambda}{2m}(\sum_{i=1}^{m}||W^{(i)}||_F^2-R)\]
之所以拉格朗日因子\(\lambda\)除以2m是为了求导结果与前一项W,b的求导结果形式一致,并无影响.
根据KKT条件,最优的\(W^*,\lambda^*\)需满足:\(\nabla_WL(W^*,\lambda^*)=0,\lambda^*\geq0,\sum_{i=1}^{m}||W^{*(i)}||_F^2 = R\)
由第一个等式求解的\(W^*\)带有参数\(\lambda\),而\(\lambda\)的值是由第三个等式决定的.也就是说R与\(\lambda\)有确定的对应关系,或者\(\lambda\)的值有R决定.简单分析可以发现,R与\(\lambda\)成反比例关系,因为\(\lambda\)越大,在cost function中W的惩罚系数越大(\(||W||_F^2\)的系数越大),因此\(\lambda\)能够抑制W的大小,与R约束W的范数作用类似.
回到神经网络训练中的L2正则化上来,一般情况下,我们直接制定\(\lambda\)的大小,其实与之对应的R也就确定了(意味着上面三个条件中第三个等式已经求解出了\(\lambda\)),此时只剩下第一和第二个条件.第一个条件R是常数,对W求导为0,因此简化为\(\nabla_WJ(W,b)=0\),也就是正则化条件下的梯度下降法.
从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化的更多相关文章
- 从MAP角度理解神经网络训练过程中的正则化
在前面的文章中,已经介绍了从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化,本次我们从最大后验概率点估计(MAP,maximum a posteriori point estimate)的 ...
- Deep Learning入门视频(下)之关于《感受神经网络》两节中的代码解释
代码1如下: #深度学习入门课程之感受神经网络(上)代码解释: import numpy as np import matplotlib.pyplot as plt #matplotlib是一个库,p ...
- windows10下安装mysql-8.0.15-winx64以及连接服务器过程中遇到的一些问题
一.下载安装配置mysql-8.0.15 1.官网(https://dev.mysql.com/downloads/mysql/)下载zip包 2.解包到我的D:\mysql目录下 3.为mysql配 ...
- 使用tensorflow下的GPU加速神经网络训练过程
下载CUDA8.0,安装 下载cuDNN v5.1安装.放置环境变量等. 其他版本就不装了.不用找其他版本的关系. 使用tensorflow-gpu1.0版本. 使用keras2.0版本. 有提示的. ...
- TensorFlow从1到2(七)线性回归模型预测汽车油耗以及训练过程优化
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是 ...
- paper 110:凸优化和非凸优化
数学中最优化问题的一般表述是求取,使,其中是n维向量,是的可行域,是上的实值函数.凸优化问题是指是闭合的凸集且是上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非凸的最优化问题. 其中,是 凸 ...
- 写在SVM之前——凸优化与对偶问题
SVM之问题形式化 SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 >>>写在SVM之前——凸优化与对偶问题 本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到 ...
- zz姚班天才少年鬲融凭非凸优化研究成果获得斯隆研究奖
姚班天才少年鬲融凭非凸优化研究成果获得斯隆研究奖 近日,美国艾尔弗·斯隆基金会(The Alfred P. Sloan Foundation)公布了2019年斯隆研究奖(Sloan Research ...
- 从损失函数优化角度:讨论“线性回归(linear regression)”与”线性分类(linear classification)“的联系与区别
1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优 ...
随机推荐
- OpenCV:OpenCV目标检测Hog+SWindow源代码分析
参考文章:OpenCV中的HOG+SVM物体分类 此文主要描述出HOG分类的调用堆栈. 使用OpenCV作图像检测, 使用HOG检测过程,其中一部分源代码如下: 1.HOG 检测底层栈的检测计算代码: ...
- iOS https 证书链获取
- (void)URLSession:(NSURLSession *)session didReceiveChallenge:(NSURLAuthenticationChallenge *)chall ...
- java 循环document 通用替换某个字符串或特殊字符
document 生成xml时 报错 XML-20100: (Fatal Error) Expected ';'. 查了半天发现是 特殊字符 & 不能直接转出,需要进行转换,因为是通用方法很 ...
- cocos creator 底部按钮touch延迟
cocos论坛里有这个问题: http://forum.cocos.com/t/ios-touchstart-bug/63367我的引擎版本:"engine_version": & ...
- Asp.Net Core 自动适应Windows服务、Linux服务、手动启动时的内容路径的扩展方法
public static IWebHostBuilder UseContentRootAsEnv(this IWebHostBuilder hostBuilder) { bool IsWindows ...
- BZOJ 1724: [Usaco2006 Nov]Fence Repair 切割木板 贪心 + 堆 + 反向思考
Description Farmer John想修理牧场栅栏的某些小段.为此,他需要N(1<=N<=20,000)块特定长度的木板,第i块木板的长度为Li(1<=Li<=50, ...
- BZOJ 3744 Gty的妹子序列 (分块+树状数组+主席树)
题面传送门 题目大意:给你一个序列,多次询问,每次取出一段连续的子序列$[l,r]$,询问这段子序列的逆序对个数,强制在线 很熟悉的分块套路啊,和很多可持久化01Trie的题目类似,用分块预处理出贡献 ...
- [luogu 4886] 快递员
传送门 Solution 虽然不是点分治但用类似点分治的方法不断接近正确结果 Code // luogu-judger-enable-o2 #include <cstdio> #inclu ...
- Java核心技术读书笔记02
第四章 对象和类 类之间的关系 最常见的三种关系 依赖("uses-a") Order依赖Account类看信息 聚合("has-a") Order包含多个It ...
- 07.网络编程-4.HTTP
HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后Web服务器返回响应(response),连接就被关闭了,在服务器 ...