Boxes and Stones

Paul and Carole like to play a game with
S stones and B boxes numbered from 1 to
B. Beforebeginning the game they arbitrarily distribute the
S stones among the boxes from 1 to
B - 1, leavingbox B empty. The game then proceeds by rounds. At each round, first Paul chooses a subset
P of the stones that are in the boxes; he may choose as many stones as he wants from as many boxes as he wants, or he may choose no stones at all, in which case
P is empty. Then, Carole decides what to donext: she can either
promote the subset P and
discard the remaining stones (that is, those stones notchosen by Paul in the first step); or she may
discard the subset P and
promote the remaining stones.

To promote a given subset means to take each stone in this subset and move it to the box with thenext number in sequence, so that if there was a stone in this subset inside box
b, it is moved to boxb + 1. To
discard a given subset means to remove every stone in this subset from its corresponding box, so that those stones are not used in the game for the remaining rounds. The figure below shows an example of the first two rounds of a
game.

Paul and Carole play until at least one stone reaches box number
B, in which case Paul wins the game, or until there are no more stones left in the boxes, in which case Carole wins the game. Paulis a very rational player, but Carole is a worthy rival because she is not only extremely good
at this game, but also quite lucky. We would like to know who is the best player, but before that we must first understand how the outcome of a game depends on the initial distribution of the stones. In particular,we would like to know in how many ways the
S stones can initially be distributed among the first B - 1 boxes so that Carole can be certain that she can win the game if she plays optimally, even if Paul never makes a mistake.

Input

Each test case is described using one line. The line contains two integers
S (1S200)
and B(2B100),
representing respectively the number of stones and the number of boxes in the game.

Output

For each test case output a line with an integer representing the number of ways in which the
S stonesmay be distributed among the first
B - 1 boxes so that Carole is certain that she can win the game.Because this number can be very large, you are required to output the remainder of dividing it by109 + 7.

Sample Input

2 3
8 4
42 42

Sample Output

2
0
498467348

题目链接:

option=com_onlinejudge&Itemid=8&category=441&page=show_problem&problem=3970">https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=441&page=show_problem&problem=3970

题目大意:P和C做游戏。有S个石头和B个盒子,他们把S个石头随意的放在1~B-1这些盒子中,P開始从1~B-1中随意的挑选一些石头。C能够决定把P选的石头丢掉让剩下的石头都往右移一格,或者把P选的石头都往右移一个。其它的都丢掉。一旦有一个石头到B盒子中。则P胜。若没有石头了则C胜,问有多少种初始的摆放状态为C的必胜态

题目分析:设dp[i][j][k]为到第i个盒子。用了j个石头,C做完决定后第i个盒子里的石头数为k的必胜态个数。离线计算出全部情况。O(1)查询,先分析P的最优策略,P的目标是尽量多的让石子右移。但是选择权在C手上,因此P的最优策略是尽量一半一半的取,假设在这样的情况下P还是输,那么就是C的必胜态了。dp[i][j][k]状态由三部分转移

dp[i][j][k] = dp[i][j - 1][k - 1] + dp[i - 1][j][2 * k] + dp[i - 1][j][2 * k + 1]

#include <cstdio>
#include <cstring>
#define ll long long
using namespace std;
int const MOD = 1e9 + 7;
int const MAX = 105;
ll dp[MAX][2 * MAX][4 * MAX]; void pre()
{
dp[0][0][0] = 1;
for(int i = 1; i <= 100; i++)
for(int j = 0; j <= 200; j++)
for(int k = 0; k <= 200; k++)
dp[i][j][k] = (dp[i][j - 1][k - 1] + dp[i - 1][j][k * 2] + dp[i - 1][j][k * 2 + 1]) % MOD;
} int main()
{
pre();
int s, b;
while(scanf("%d %d", &s, &b) != EOF)
printf("%lld\n", dp[b][s][0]);
}

UVa 12525 Boxes and Stones (dp 博弈)的更多相关文章

  1. UVA 10404 Bachet's Game(dp + 博弈?)

    Problem B: Bachet's Game Bachet's game is probably known to all but probably not by this name. Initi ...

  2. codevs 1421 秋静叶&秋穣子(树上DP+博弈)

    1421 秋静叶&秋穣子   题目描述 Description 在幻想乡,秋姐妹是掌管秋天的神明,作为红叶之神的姐姐静叶和作为丰收之神的妹妹穰子.如果把红叶和果实联系在一 起,自然会想到烤红薯 ...

  3. hdu6199 gems gems gems dp+博弈

    /** 2017 ACM/ICPC Asia Regional Shenyang Online 解题报告 题目:hdu6199 gems gems gems 链接:http://acm.hdu.edu ...

  4. UVA.10066 The Twin Towers (DP LCS)

    UVA.10066 The Twin Towers (DP LCS) 题意分析 有2座塔,分别由不同长度的石块组成.现在要求移走一些石块,使得这2座塔的高度相同,求高度最大是多少. 问题的实质可以转化 ...

  5. POJ 2068 NIm (dp博弈,每个人都有特定的取最大值)

    题目大意: 有2n个人,从0开始编号,按编号奇偶分为两队,循环轮流取一堆有m个石子的石堆,偶数队先手,每个人至少取1个,至多取w[i]个,取走最后一个石子的队伍输.问偶数队是否能赢. 分析: 题目数据 ...

  6. UVA 1482 - Playing With Stones(SG打表规律)

    UVA 1482 - Playing With Stones 题目链接 题意:给定n堆石头,每次选一堆取至少一个.不超过一半的石子,最后不能取的输,问是否先手必胜 思路:数值非常大.无法直接递推sg函 ...

  7. UVA 10003 Cutting Sticks 区间DP+记忆化搜索

    UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...

  8. UVA 10891 区间DP+博弈思想

    很明显带有博弈的味道.让A-B最大,由于双方都采用最佳策略,在博弈中有一个要求时,让一方的值尽量大.而且由于是序列,所以很容易想到状态dp[i][j],表示序列从i到j.结合博弈中的思想,表示初始状态 ...

  9. UVA - 1625 Color Length[序列DP 代价计算技巧]

    UVA - 1625 Color Length   白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束   和模拟赛那道环形DP很想,计算这 ...

随机推荐

  1. Django day15 (一) cbv装饰器 , 中间件

    一: 装饰器 二: 中间件

  2. 使用composer 实现自动加载

    准备工作:提前安装好composer 1.创建项目目录OOP 2.OOP目录下新建composer.json文件,composer.json是一个空json文件,代码如下: { } 3.打开控制台,进 ...

  3. MongoDB安装使用教程

    参考菜鸟教程:http://www.runoob.com/mongodb/mongodb-tutorial.html

  4. mySQL用代码添加表格内容 删除数据方法

    通过代码对表格内容操作: 1.添加数据insert into Info values('p009','张三',1,'n001','2016-8-30 12:9:8') ; 给特定的列添加数据inser ...

  5. selenium有多个窗口时操作某个窗口的内容

    这个页面点击html/css后会弹出一个新的窗口,此时要操作新的窗口的内容,使用switchTo 跳转代码 driver.get("https://www.imooc.com"); ...

  6. OAuth密码模式说明(resource owner password credentials)

    用户向客户端(third party application)提供用户名和密码. 客户端将用户名和密码发给认证服务器(Authorization server),向后者请求令牌(token). 认证服 ...

  7. 肯德基收银系统java

    参考肯德基官网的信息模拟肯德基快餐店的收银系统,合理使用C++或Java或Python结合设计模式(2种以上)至少实现系统的以下功能: 1.正常餐品结算和找零. 2.基本套餐结算和找零. 3.使用优惠 ...

  8. SUSE 11 SP3 搭建weblogic服务

    环境的搭建和业务需求相关,仅供参考 环境: SUSE 11 SP3 安装步骤 创建一个weblogic组 创建一个用户名为weblogic的用户, 创建相关目录 上传jdk,脚本等 安装 创建用户及其 ...

  9. svn版本库更新后自动同步到www

    注意:www目录一定要用SVN服务器 checkout出Repositories的代码 步骤: (1)新建www根目录 mkdir -p /data/www/lehuo (2)在www根目录下检出(c ...

  10. linux邮件服务

    linux本地常见邮件服务有: Centos5:默认使用sendmail邮件服务,开启方式/etc/init.d/sedmail start Centos6:默认使用postfix邮件服务,开启方式/ ...