Linux 从core信息中找到TLS信息
背景
我们在查core问题时,有时候须要查看某个TLS变量的值。可是GDB没有提供直接的命令,或者我不知道。这篇文字的目的。就是想办法从core文件里找出某个线程存放TLS变量的内容。
依据
Linux的glibc库创建线程时。使用mmap创建一块内存空间,作为此线程的栈空间。并将一个叫做struct pthread的数据结构放在栈的顶端(參考glibc代码allocate_stack@allocatestack.c)。而TLS的数据结构就在struct pthread中:
struct pthread
{
// ...
struct pthread_key_data
{
uintptr_t seq;
void *data;
} specific_1stblock[PTHREAD_KEY_2NDLEVEL_SIZE];
struct pthread_key_data *specific[PTHREAD_KEY_1STLEVEL_SIZE];
// ...
};
当中specific_1stblock数组是第一层的TLS变量,PTHREAD_KEY_2NDLEVEL_SIZE是一个宏定义,在glib2.20中的大小是32。假设TLS变量超过了这个值,就会使用specific来存储。从这里能够看出来。仅仅要我们找到了specific_1stblock的位置。就能找到TLS变量的位置了。
依据上面的分析。我们须要先找到struct pthread的位置。先看一下struct pthread在栈中的位置:
/* Place the thread descriptor at the end of the stack. */
#if TLS_TCB_AT_TP
pd = (struct pthread *) ((char *) mem + size - coloring) - 1;
#elif TLS_DTV_AT_TP
pd = (struct pthread *) ((((uintptr_t) mem + size - coloring
- __static_tls_size)
& ~__static_tls_align_m1)
- TLS_PRE_TCB_SIZE);
#endif
pd的定义是struct pthread *pd;。代码中的mem是使用mmap创建的内存首地址。coloring依据宏定义COLORING_INCREMENT来决定是否是一个变化的值。在我看的代码版本号和使用的操作系统(Redhat 6.5)安装的glibc中,都是0,也就是说coloring是一个常量0。这里还有两个宏定义条件,TLS_TCB_AT_TP和TLS_DTV_AT_TP,在glibc2.20。x86_64上使用的是TLS_TCB_AT_TP。因此pd相对于mem的偏移就是固定的大小sizeof(struct pthread)。
通过上面的描写叙述,假设我们能够知道某个线程所在内存段,那么找到这个内存段的尾部,然后向前偏移sizeof(struct pthread)就能够找到struct pthread *的地址,进而找到specific_1stblock和specific的位置。
然而另一个问题,就是怎么确定sizeof(struct pthread)的值?
尽管一个结构体在编译后的大小已经固定下来,可是看到glibc中复杂的定义,还有那么多宏定义限制。我就仅仅能呵呵了。只是,我另一招,就是直接从当前运行的一些程序中,确定sizeof(struct pthread)的大小。
glibc提供的非常多函数中都会获取TLS信息,比方pthread_self。
这个函数非常短:
pthread_t
__pthread_self (void)
{
return (pthread_t) THREAD_SELF;
}
代码中THREAD_SELF的定义是
# define THREAD_SELF \
({ struct pthread *__self; \
asm ("mov %%fs:%c1,%0" : "=r" (__self) \
: "i" (offsetof (struct pthread, header.self))); \
__self;})
这个代码仅仅是拿到fs段寄存器加上固定的偏移量的值。事实上我本来想过直接用fs寄存器的值,可惜这个值无论在正在运行的程序中还是在core文件里,gdb都是看不到的。
好吧,做了这么多白搭了。
只是幸运的是,gdb在调试正在运行的程序的时候,是能够直接运行函数的。我把pthread_self()函数的返回值拿出来,然后跟这个线程所在段的内存做对照,就能够知道struct pthread *相对于栈底的偏移量了。
费了九牛二虎之力拿到了sizeof(struct pthread),回头看一看。才完毕了任务的一半。还得知道specific_1stblock相对于struct pthread *的偏移量。只是还好,这个是比較easy做的,看看pthread_getspecific的汇编代码就一目了然了:
Dump of assembler code for function pthread_getspecific:
0x0000003bcd40c470 <+0>: cmp $0x1f,%edi
0x0000003bcd40c473 <+3>: push %rbx
0x0000003bcd40c474 <+4>: ja 0x3bcd40c4ba <pthread_getspecific+74>
0x0000003bcd40c476 <+6>: mov %edi,%eax
0x0000003bcd40c478 <+8>: shl $0x4,%rax
0x0000003bcd40c47c <+12>: mov %fs:0x10,%rdx
0x0000003bcd40c485 <+21>: lea 0x310(%rdx,%rax,1),%rdx
0x0000003bcd40c48d <+29>: mov 0x8(%rdx),%rax
0x0000003bcd40c491 <+33>: test %rax,%rax
0x0000003bcd40c494 <+36>: je 0x3bcd40c4ac <pthread_getspecific+60>
.....
对照一下glibc中的代码:
struct pthread_key_data *data;
/* Special case access to the first 2nd-level block. This is the
usual case. */
if (__glibc_likely (key < PTHREAD_KEY_2NDLEVEL_SIZE))
data = &THREAD_SELF->specific_1stblock[key];
else
THREAD_SELF就是当前线程的struct pthread *。
C代码跟汇编代码对照着看,就非常easy找到specific_1stblock的偏移量。汇编中的edi寄存器就是传入的參数pthread_key_t key。
mov %fs:0x10,%rdx这一行代码使用了fs寄存器。跟上面看到的pthread_self函数的方法一样,这就能够确定是获取struct pthread *的地址。
那么接下来的一行lea 0x310(%rdx,%rax,1),%rdx自然就是获取specific_1stblock的值了。这一行中rdx寄存器存放struct pthread*。rax存放key * sizeof(struct pthread_key_data),最后把rdx + (rax * 1) + 0x310的值放入了rdx中,非常明显,0x310就是specific_1stblock的偏移量(0x310)。
到眼下为止。已经准备好了全部获取TLS变量的条件,sizeof(struct pthread)和specific_1stblock的偏移量。以下就開始动手測试验证。
測试
写一个使用TLS的測试代码
这个代码创建了一个线程变量和一个线程,创建出来的线程设置了线程变量的值。
#include <pthread.h>
#include <unistd.h>
pthread_key_t key;
void *thread_func(void *arg)
{
pthread_setspecific(key, (const void *)0x12345678); // 设置一个特殊的值方便检測測试结果
sleep(100); // 睡眠一段时间用来生成core文件
return NULL;
}
int main(int argc, char **argv)
{
pthread_key_create(&key, NULL);
pthread_t tid;
pthread_create(&tid, NULL, thread_func, NULL);
pthread_join(tid, NULL);
return 0;
}
编译
g++ -lpthread test.cpp
默认生成a.out。直接运行,会在sleep中暂停一段时间,用gdb attach上去。
运行info thread
(gdb) info thread
2 Thread 0x7f6cc2d15710 (LWP 15000) 0x0000003bcd0a6a8d in nanosleep () from /lib64/libc.so.6
* 1 Thread 0x7f6cc2d17720 (LWP 14999) 0x0000003bcd40803d in pthread_join () from /lib64/libpthread.so.0
(gdb)
我们来看Thread 2,就是创建出来的线程。
运行thread 2切换到线程2。
运行call pthread_self()。结果却得到
(gdb) call pthread_self()
$8 = -1026468080
改成十六进制打印
(gdb) p/x $8
$9 = 0xc2d15710
明显还是不正确,相当无语,gdb的call指令仅仅打印了4个字节。只是略微注意一下就发现了info thread输出的结果,有一个数据和这里一样:
2 Thread 0x7f6cc2d15710 (LWP 15000) 0x0000003bcd0a6a8d in nanosleep () from /lib64/libc.so.6
Thread后面的数字,就是pthread的地址。只是这个数据在调试core文件时并没有打印:
(gdb) info thread
2 Thread 14999 0x0000003bcd40803d in pthread_join () from /lib64/libpthread.so.0
* 1 Thread 15000 0x0000003bcd0a6a8d in nanosleep () from /lib64/libc.so.6
尽管运行的结果与预期不符,可是还好拿到了pthread的地址。接下来找到这个线程所在的内存段。就是栈区间。进程的数据段信息能够从/proc/pid/maps文件里看到。当中pid是进程号。
这是我測试出来的进程中的内存信息:
7f6cc2315000-7f6cc2316000 ---p 00000000 00:00 0
7f6cc2316000-7f6cc2d1d000 rw-p 00000000 00:00 0
7fff4c321000-7fff4c337000 rw-p 00000000 00:00 0 [stack]
7fff4c35a000-7fff4c35b000 r-xp 00000000 00:00 0 [vdso]
非常明显。0x7f6cc2d15710属于这一段:
7f6cc2316000-7f6cc2d1d000 rw-p 00000000 00:00 0
这就是线程2的栈空间。因为栈是从上往下增长的,那么栈底就是7f6cc2d1d000。它与0x7f6cc2d15710的距离是0x78f0。
在gdb中用gcore命令生成一个core文件。用gdb打开core文件验证測试,并找出TLS的值。
gdb a.out core
打印出core文件记录的程序内存段
(gdb) info files
Symbols from "/data01/usergrp/wangyl11/a.out".
Local core dump file:
`/data01/usergrp/wangyl11/core.14999', file type elf64-x86-64.
0x0000000000400000 - 0x0000000000400000 is load1
0x0000000000600000 - 0x0000000000601000 is load2
0x00000000006d1000 - 0x00000000006f2000 is load3
.............................
0x0000003bcde83000 - 0x0000003bcde84000 is load24
0x00007f6cc2316000 - 0x00007f6cc2d1d000 is load25
0x00007fff4c321000 - 0x00007fff4c337000 is load26
0x00007fff4c35a000 - 0x00007fff4c35b000 is load27
0xffffffffff600000 - 0xffffffffff601000 is load28
........
一大堆内存段。哪个才是自己要找的线程呢?
线程所处的空间是一个栈空间,那仅仅要找到某个线程的栈上的变量或者其他信息,再依据这个信息就能够找到相应的内存段。有一个非常easy查看的栈信息就是栈寄存器rsp。
看下线程的栈寄存器:
(gdb) thread 1
[Switching to thread 1 (Thread 15000)]#0 0x0000003bcd0a6a8d in nanosleep () from /lib64/libc.so.6
(gdb) info reg rsp
rsp 0x7f6cc2d14c90 0x7f6cc2d14c90
这样就找到了这个段:
0x00007f6cc2316000 - 0x00007f6cc2d1d000 is load25
这一段也是刚才看到的线程栈空间。
拿栈底的地址就是 0x00007f6cc2d1d000,减去pthread偏移0x78f0就是 0x7F6CC2D15710,再加上specific_1stblock的偏移量0x310,得到0x7F6CC2D15A20。
最后一个,验证拿到地址正确性:
(gdb) x/2xg 0x7F6CC2D15A20
0x7f6cc2d15a20: 0x0000000000000001 0x0000000012345678
大功告成。上面的结果,第一个数字是seq,第二个是data(这两个是struct pthread_key_data的成员)。
尽管验证的core文件正好是拿运行程序生成的,只是就是再运行一次生成一个新的core文件,这种方法一样适用。
只是这也有受限的地方。最重要的原因是觉得线程数据struct pthread就位于栈底,而栈在进程空间中是单独的一个内存段。假设这个栈空间是由用户创建线程时提供的。这种方法就可能不会适用。希望后面能找到更通用的方法,也许GDB会直接提供命令訪问线程变量。
总结
- 先找到
struct pthread地址。能够通过gdb跟踪正在运行的程序,查找进程栈内存空间,找到距离栈底的距离;
- 通过反汇编
pthread_getspecific。找到specific_1stblock相对于struct pthread *的偏移量; - 在core文件里,通过栈寄存器rsp的地址,找到该线程所处内存段,依据上两步的信息,计算出
specific_1stblock的地址,进而打印出TLS变量的值。
NOTE: 此方法受限于GLIBC自己创建的内存栈空间和Linux X86_64环境。
Linux 从core信息中找到TLS信息的更多相关文章
- Python之向日志输出中添加上下文信息
除了传递给日志记录函数的参数(如msg)外,有时候我们还想在日志输出中包含一些额外的上下文信息.比如,在一个网络应用中,可能希望在日志中记录客户端的特定信息,如:远程客户端的IP地址和用户名.这里我们 ...
- 【转】Python之向日志输出中添加上下文信息
[转]Python之向日志输出中添加上下文信息 除了传递给日志记录函数的参数(如msg)外,有时候我们还想在日志输出中包含一些额外的上下文信息.比如,在一个网络应用中,可能希望在日志中记录客户端的特定 ...
- Python 日志输出中添加上下文信息
Python日志输出中添加上下文信息 除了传递给日志记录函数的参数(如msg)外,有时候我们还想在日志输出中包含一些额外的上下文信息.比如,在一个网络应用中,可能希望在日志中记录客户端的特定信息,如: ...
- 最简单的方法是使用标准的 Linux GUI 程序之一: i-nex 收集硬件信息,并且类似于 Windows 下流行的 CPU-Z 的显示。 HardInfo 显示硬件具体信息,甚至包括一组八个的流行的性能基准程序,你可以用它们评估你的系统性能。 KInfoCenter 和 Lshw 也能够显示硬件的详细信息,并且可以从许多软件仓库中获取。
最简单的方法是使用标准的 Linux GUI 程序之一: i-nex 收集硬件信息,并且类似于 Windows 下流行的 CPU-Z 的显示. HardInfo 显示硬件具体信息,甚至包括一组八个的流 ...
- 【Linux】 linux中的进程信息相关的一些内容
_ linux进程信息 ■ top top命令用于动态地查看系统的进程和其他一些资源的信息.开启top的时候可以加上-t <sec>来设置top更新的频率高低.进入top界面之后,可以输入 ...
- 『.NET Core CLI工具文档』(二).NET Core 工具遥测(应用信息收集)
说明:本文是个人翻译文章,由于个人水平有限,有不对的地方请大家帮忙更正. 原文:.NET Core Tools Telemetry 翻译:.NET Core 工具遥测(应用信息收集) .NET Cor ...
- 修改.net mvc中前端验证信息的显示方式
最近一直在学习.net core的用法.想法是通过写一个新闻系统来熟悉一下这个最新的技术.其实,我以前一直对.net技术都是浅尝辄止,最主要原因是没有动力.平时写企业站因为时间原因,不是使用php的框 ...
- linux查看cpu、内存、版本信息
1. 查看物理CPU的个数#cat /proc/cpuinfo |grep "physical id"|sort |uniq|wc –l 2. 查看逻辑CPU的个数#cat ...
- PowerShell_零基础自学课程_6_PS中获取帮助信息详解、管道、格式化输
前些文章陆续的说了一些关于这些主题,但是讨论的都不够深入,今天我们深入的了解一下获取帮助信息.管道以及格式化输出的内容. 一.获取帮助信息 在PS中获取帮助信息,最常用的有: -? .get-comm ...
随机推荐
- TCP简单说|(上)
本文在Creative Commons许可证下发布 TCP是一个巨复杂的协议,因为他要解决很多问题,而这些问题又带出了很多子问题和阴暗面.所以学习TCP本身是个比较痛苦的过程,但对于学习的过程却能让人 ...
- 洛谷 P1913 L国的战斗之伞兵
P1913 L国的战斗之伞兵 题目背景 L国即将与I国发动战争!! 题目描述 为了在敌国渗透作战,指挥官决定:派出伞兵前往敌国!然而敌国的风十分强烈,能让伞兵在同一高度不停转悠,直到被刮到一个无风区… ...
- vector要注意的点
vector的元素类别T,必须具备assignable和copyable两个性质. vector的容量很重要: 1. 一旦内存重新配置,和vector元素相关的所有references.pointer ...
- jquery10 闭包示例
o = { a:1, o:{ b:2, f : function(){ alert(o.a); alert(o.b);//undefined } } } o.o.f(); o = { a:7, o : ...
- C#加减乘除
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 76.Nodejs Express目录结构
转自:https://blog.csdn.net/xiaoxiaoqiye/article/details/51160262 Express是一个基于Node.js平台的极简.灵活的web应用开发框架 ...
- 关于obj.currentStyle.property、window.getComputedStyle(obj,null).property、obj.style.property的理解
首先是obj,style.property 我一直用这个obj.style.property这个属性来修改内联和外联的obj属性,但是从网上看到了obj.style.property居然只能读取内嵌的 ...
- reactor官方文档译文(2)Reactor-core模块
You should never do your asynchronous work alone. — Jon Brisbin 完成Reactor 1后写到 You should never do y ...
- JavaScript入门:003—JS中的变量
编程语言都是同样的,JS中也是有变量的.首先JS的变量是区分大写和小写的,这个须要注意.比方number和Number是不同的变量.无论是经常使用类型的,还是对象类型,比方 Object obj和Ob ...
- js配合My97datepicker给日期添加天数
<input name="ctl00$ContentPlaceHolder1$txtTimeStart" type="text" value=" ...