一、前言

在数据量大的企业级实践中,Elasticsearch显得非常常见,特别是数据表超过千万级后,无论怎么优化,还是有点力不从心!使用中,最首先的问题就是怎么把千万级数据同步到Elasticsearch中,在一些开源框架中知道了,有专门进行同步的!那就是Logstash 。在思考,同步完怎么查看呢,这时Kibana映入眼帘,可视化的界面,让使用更加的得心应手哈!!这就是三剑客ELK。不过大多时候都是进行日志采集的,小编没有用,只是用来解决一个表的数据量大,查询慢的!后面小编在专门搭建日志采集的ELK

二、三者介绍

1. Elasticsearch

Elasticsearch 是一个分布式RESTful 风格的搜索数据分析引擎,能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心,Elasticsearch 会集中存储您的数据,让您飞快完成搜索,微调相关性,进行强大的分析,并轻松缩放规模。

2. Kibana

Kibana 是一个免费且开放的用户界面,能够让您对 Elasticsearch 数据进行可视化,并让您在 Elastic Stack 中进行导航。您可以进行各种操作,从跟踪查询负载,到理解请求如何流经您的整个应用,都能轻松完成。

3. Logstash

Logstash 是免费且开放的服务器端数据处理管道,能够从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中。

三、版本选择

现在最新版就是8.5,最新的教程少和问题未知,小编选择7版本的,求一手稳定哈!

于是去hub.docker查看了一下,经常用的版本,最终确定为:7.17.7

dockerHub官网地址

官方规定:

安装 Elastic Stack 时,您必须在整个堆栈中使用相同的版本。例如,如果您使用的是 Elasticsearch 7.17.7,则安装 Beats 7.17.7、APM Server 7.17.7、Elasticsearch Hadoop 7.17.7、Kibana 7.17.7 和 Logstash 7.17.7

四、搭建mysql

1. 拉去MySQL镜像

sudo docker pull mysql:5.7



)

2. Docker启动MySQL

sudo docker run -p 3306:3306 --name mysql \
-v /mydata/mysql/log:/var/log/mysql \
-v /mydata/mysql/data:/var/lib/mysql \
-v /mydata/mysql/conf:/etc/mysql \
-e MYSQL_ROOT_PASSWORD=root \
-d mysql:5.7
####这里往下是解释,不需要粘贴到linux上#############
--name 指定容器名字
-v 将对应文件挂载到linux主机上
-e 初始化密码
-p 容器端口映射到主机的端口(把容器的3306映射到linux中3306,这样windows上就可以访问这个数据库)
-d 后台运行

3. Docker配置MySQL

vim /mydata/mysql/conf/my.cnf # 创建并进入编辑
[client]
default-character-set=utf8
[mysql]
default-character-set=utf8
[mysqld]
init_connect='SET collation_connection = utf8_unicode_ci'
init_connect='SET NAMES utf8'
character-set-server=utf8
collation-server=utf8_unicode_ci
skip-character-set-client-handshake
skip-name-resolve

4. Docker重启MySQL使配置生效

docker restart mysql

5. 新增数据库

6. 新建测试表

DROP TABLE IF EXISTS `sys_log`;
CREATE TABLE `sys_log` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '日志主键',
`title` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '模块标题',
`business_type` int(2) NULL DEFAULT 0 COMMENT '业务类型(0其它 1新增 2修改 3删除)',
`method` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '方法名称',
`request_method` varchar(10) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '请求方式',
`oper_name` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '操作人员',
`oper_url` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '请求URL',
`oper_ip` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '主机地址',
`oper_time` datetime(0) NULL DEFAULT NULL COMMENT '操作时间',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 1585197503834284034 CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '操作日志记录' ROW_FORMAT = Dynamic; SET FOREIGN_KEY_CHECKS = 1;

五、ELK搭建准备

1. 创建挂载的文件

es挂载:

mkdir -p /mydata/elk/elasticsearch/{config,plugins,data,logs}

kibana挂载:

mkdir -p /mydata/elk/kibana/config

logstash挂载:

mkdir -p /mydata/elk/logstash/config

2. ES挂载具体配置

vim /mydata/elk/elasticsearch/config/elasticsearch.yml

输入下面命令:

http.host: 0.0.0.0
xpack.security.enabled: false

http.host:任何地址都可以访问。

xpack.security.enabled:关闭密码认证

3. Kibana挂载具体配置

vim /mydata/elk/kibana/config/kibana.yml

内容:

server.host: 0.0.0.0
elasticsearch.hosts: [ "http://192.168.239.131:9200" ]

elasticsearch.hosts:指向es地址

4. Logstash挂载具体配置

vim /mydata/elk/logstash/config/logstash.yml

内容:

http.host: 0.0.0.0
xpack.monitoring.elasticsearch.hosts: [ "http://192.168.239.131:9200" ]

记录存放:

touch log
chmod 777 log
vim /mydata/elk/logstash/config/logstash.conf

内容:

jdbc_driver_library:指定必须要自己下载mysql-connector-java-8.0.28.jar,版本自己决定,下载地址

statement:如果sql长,可以指定sql文件,直接指定文件所在位置,这里的位置都为容器内部的地址;

last_run_metadata_path:上次记录存放文件对应上方的log。

input {
stdin {
}
jdbc {
jdbc_connection_string => "jdbc:mysql://192.168.239.131:3306/test?useUnicode=true&characterEncoding=utf8&serverTimezone=UTC"
jdbc_user => "root"
jdbc_password => "root"
jdbc_driver_library => "/usr/share/logstash/config/mysql-connector-java-8.0.28.jar"
jdbc_driver_class => "com.mysql.jdbc.Driver"
jdbc_paging_enabled => "true"
jdbc_page_size => "300000"
statement => "SELECT id, title, business_type, method, request_method, oper_name, oper_url, oper_ip, oper_time FROM sys_log"
schedule => "*/1 * * * *"
use_column_value => false
tracking_column_type => "timestamp"
tracking_column => "oper_time"
record_last_run => true
jdbc_default_timezone => "Asia/Shanghai"
last_run_metadata_path => "/usr/share/logstash/config/log"
}
} output {
elasticsearch {
hosts => ["192.168.239.131:9200"]
index => "sys_log"
document_id => "%{id}"
}
stdout {
codec => json_lines
}
}

流水线指定上面的配置文件:

vim /mydata/elk/logstash/config/pipelines.yml

内容:

- pipeline.id: sys_log
path.config: "/usr/share/logstash/config/logstash.conf"

最终/mydata/elk/logstash/config/下的文件

防止保存没有修改权限,可以把上面建的文件夹和文件赋予修改权限:

chmod 777 文件名称

五、运行容器

0. docker compose一键搭建

在elk目录创建:

vim docker-compose.yml

内容如下:

version: '3'
services:
elasticsearch:
image: elasticsearch:7.17.7
container_name: elasticsearch
ports:
- "9200:9200"
- "9300:9300"
environment:
- cluster.name=elasticsearch
- discovery.type=single-node
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- /mydata/elk/elasticsearch/plugins:/usr/share/elasticsearch/plugins
- /mydata/elk/elasticsearch/data:/usr/share/elasticsearch/data
- /mydata/elk/elasticsearch/logs:/usr/share/elasticsearch/logs kibana:
image: kibana:7.17.7
container_name: kibana
ports:
- "5601:5601"
depends_on:
- elasticsearch
environment:
I18N_LOCALE: zh-CN
volumes:
- /mydata/elk/kibana/config/kibana.yml:/usr/share/kibana/config/kibana.yml logstash:
image: logstash:7.17.7
container_name: logstash
ports:
- "5044:5044"
volumes:
- /mydata/elk/logstash/config:/usr/share/logstash/config
depends_on:
- elasticsearch

一定要在docker-compose.yml所在目录执行命令!!

运行:

docker compose up -d

完成后可以跳到5进行查看kibana!!

1. 运行ES

docker run --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx512m" -v /mydata/elk/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v /mydata/elk/elasticsearch/data:/usr/share/elasticsearch/data -v  /mydata/elk/elasticsearch/plugins:/usr/share/elasticsearch/plugins -d elasticsearch:7.17.7

2. 运行Kibana

docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.239.131:9200 -p 5601:5601 -d kibana:7.17.7

3. 运行Logstash

docker run -d -p 5044:5044 -v /mydata/elk/logstash/config:/usr/share/logstash/config --name logstash logstash:7.17.7

4. 容器完结图

5. 访问Kibana

http://192.168.239.131:5601/app/home#/

六、新建索引

PUT /sys_log
{
"settings": {
"number_of_shards": 1,
"number_of_replicas": 0,
"index": {
"max_result_window": 100000000
}
},
"mappings": {
"dynamic": "strict",
"properties": {
"@timestamp": {
"type": "date"
},
"@version": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}, "business_type": {
"type": "integer"
},
"title": {
"type": "text"
},
"method": {
"type": "text"
},
"request_method": {
"type": "text"
},
"oper_name": {
"type": "text"
},
"oper_url": {
"type": "text"
},
"oper_ip": {
"type": "text"
},
"oper_time": {
"type": "date"
},
"id": {
"type": "long"
}
}
}
}

七、测试

新增几条记录,然后查看Logstash日志

docker logs -f logstash



我们去kibana看一下是否已存在:

输入命令:

GET /sys_log/_search
{
"query": {
"match_all": {}
}
}

我们看到存在6条,和mysql一致!!



八、总结

话费了一天时间,终于搭建完成了,太不容易了!下篇文章搭建ELK日志,欢迎点个关注,等待更新哈!!

如果对你有帮助,还请不要吝啬您的发财小手,一键三连是我写作的动力,谢谢大家哈!!


可以看下一小编的微信公众号文章首发看,欢迎关注,一起交流哈!!

docker搭建Elasticsearch、Kibana、Logstash 同步mysql数据到ES的更多相关文章

  1. 使用logstash同步MySQL数据到ES

    使用logstash同步MySQL数据到ES 版权声明:[分享也是一种提高]个人转载请在正文开头明显位置注明出处,未经作者同意禁止企业/组织转载,禁止私自更改原文,禁止用于商业目的. https:// ...

  2. centos7配置Logstash同步Mysql数据到Elasticsearch

    Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中.个人认为这款插件是比较稳定,容易配置的使用Logstash之前,我们得明确 ...

  3. 使用Logstash来实时同步MySQL数据到ES

    上篇讲到了ES和Head插件的环境搭建和配置,也简单模拟了数据作测试 本篇我们来实战从MYSQL里直接同步数据 一.首先下载和你的ES对应的logstash版本,本篇我们使用的都是6.1.1 下载后使 ...

  4. Centos8 部署 ElasticSearch 集群并搭建 ELK,基于Logstash同步MySQL数据到ElasticSearch

    Centos8安装Docker 1.更新一下yum [root@VM-24-9-centos ~]# yum -y update 2.安装containerd.io # centos8默认使用podm ...

  5. 实战ELK(6)使用logstash同步mysql数据到ElasticSearch

    一.准备 1.mysql 我这里准备了个数据库mysqlEs,表User 结构如下 添加几条记录 2.创建elasticsearch索引 curl -XPUT 'localhost:9200/user ...

  6. 【记录】ELK之logstash同步mysql数据到Elasticsearch ,配置文件详解

    本文出处:https://my.oschina.net/xiaowangqiongyou/blog/1812708#comments 截取部分内容以便学习 input { jdbc { # mysql ...

  7. Docker搭建ElasticSearch+Redis+Logstash+Filebeat日志分析系统

    一.系统的基本架构 在以前的博客中有介绍过在物理机上搭建ELK日志分析系统,有兴趣的朋友可以看一看-------------->>链接戳我<<.这篇博客将介绍如何使用Docke ...

  8. logstash同步mysql数据失败

      问题描述 前提: 项目采用Elasticsearch提供搜索服务,Mysql提供存储服务,通过Logstash将Mysql中数据同步到Elasticsearch. 问题: 使用logstash-j ...

  9. elasticsearch使用river同步mysql数据

    ====== mysql的river介绍======      - 什么是river?river代表es的一个数据源,也是其它存储方式(如:数据库)同步数据到es的一个方法.它是以插件方式存在的一个e ...

  10. logstash同步mysql数据到mysql(问题一)

    问题 通过logstash同步数据时 字段类型为tinyint时 通过过去 0变成了false  1变为了true 时间类型 变为 2018-10-16T14:58:02.871Z 分析 开始尝试通过 ...

随机推荐

  1. 聊聊Vim的工作原理

    聊聊Vim的工作原理 日常里一直在用Vim这个编辑器,前阵子学习关于Linux中的fd(文件描述符)时,发现vim的进程描述符会比上一个自动加一,后续了解到vim的工作原理后,解开了这个疑问,所以记录 ...

  2. AcWing 最短Hamilton距离 (状压DP)

    题目描述 给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径. Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰 ...

  3. 洛谷P1640 SCOI2010 连续攻击游戏 (并查集/匹配)

    本题介绍两种做法: 1 并查集 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=1000005; 4 int ...

  4. ArrayList LinkedList Vector之间的区别

    List主要有ArrayList,LinkedList和vector三种实现.这三种都实现了List接口,使用方式也很相似,主要区别在于其实现方式的不同! 这三种数据结构中,ArrayList和Vec ...

  5. 非Navicat破解延长14天试用时间

    延长Navicat使用时长 Navicat作为一套多连接数据库开发工具,十分好用,购买正版太过昂贵,破解版过于麻烦,有时候还会有安全问题,好在我们有14天的试用时间,我们可以从这个方面入手 对于有能力 ...

  6. 细聊.Net Core中IServiceScope的工作方式

    前言 自从.Net Core引入IOC相关的体系之后,关于它的讨论就从来没有停止过,因为它是.Net Core体系的底层框架,你只要使用了.Net Core的时候就必然会用到它.当然关于使用它的过程中 ...

  7. PHP配置负载均衡

    我项目是用宝塔面板.所以这次用宝塔面板演示. 环境: LNMP 代码:2套.2套代码除了配置其他都是一样 域名:1个.2级域名.其实一级二级都没关系 /************************ ...

  8. SQL面试50题------(初始化工作、建立表格)

    文章目录 1.建表 1.1 学生表和插入数据 1.2 教师表和数据 1.3 课程表和数据 1.4 成绩表和数据 2.数据库数据 2.1 学生表 2.2 教师表 2.3 课程表 2.4 得分表 1.建表 ...

  9. 2022最新版JDK1.8的安装教程、包含jdk1.8的提取码(亲测可用)

    文章目录 1.jdk的安装 1.1.下载(百度网盘jdk1.8提取码永久有效) 1.2.双击提取出来的exe,运行程序.如下图 1.3.进入安装向导 1.4.选择默认(安装所有的组件).同时更改安装路 ...

  10. 齐博x1一段不错的小js提高一点点阅读体验 计算本文阅读所需的时长

    如图所示很多比较大的站点都有这样的一个小玩意 就是本文有多少字 阅读需要多少时间. 一段小小的js就可以实现,当然了php也可以功能太小了不值得做钩子或者插件自己需要的话再模板加一下吧. <sc ...