Task 1

\(\mathcal{Prob:}\) \((3x - 2y)^{18}\) 的展开式中, \(x^5y^{13}\) 的系数是什么?\(x^8y^9\) 的系数是什么?

\(\mathcal{Sol:}\) 由二项式定理可得:\(x^5y^{13}\) 的系数为 \(-\binom {18} {5} \times 3^5 \times 2^{13}\),没有 \(x^8y^9\) 这一项。


Task 2

\(\mathcal{Prob:}\) 用二项式定理证明:\(3^n = {\large \sum \limits_{k = 0}^{n} } \dbinom {n} {k} 2 ^ k\),并扩展结果,对任意实数 \(r\) 求和 \({\large \sum \limits_{k = 0}^{n} } \dbinom {n} {k} r ^ k\)。

\(\mathcal{Sol:}\) \(3^n = (2 + 1) ^ n\),然后二项式定理直接展开即可得右式。

\(\mathcal{Extra:}\) 考虑逆用二项式定理 \({\large \sum \limits_{k = 0}^{n}} \dbinom {n} {k} r ^ k = (r + 1) ^ n\)。


Task 3

\(\mathcal{Prob:}\) 用二项式定理证明:\(2^n = {\large \sum \limits _{k = 0}^{n}} (-1)^k \dbinom {n} {k} 3^{n - k}\)。

\(\mathcal{Sol:}\) \(2^n = (3 - 1) ^ n\),然后二项式定理直接展开即可得右式。


Task 4

\(\mathcal{Prob:}\) 求和 \({\large \sum \limits _{k = 0}^{n}} (-1)^k \dbinom {n} {k} 10^k\)。

\(\mathcal{Sol:}\) \({\large \sum \limits _{k = 0}^{n}} (-1)^k \dbinom {n} {k} 10^k = {\large \sum \limits _{k = 0}^{n}} (-1)^k \dbinom {n} {k} 10^k \times 1^{n - k}\)。

逆用二项式定理,原式可化为:\((1 - 10) ^ n\),即 \((-9)^n\)。


Task 5

\(\mathcal{Prob:}\) 试证明 \(\dbinom {n} {k} - \dbinom {n - 3} {k} = \dbinom {n - 1}{k - 1} + \dbinom {n - 2} {k - 1} + \dbinom {n - 3} {k - 1}\)。

$\mathcal{Sol:} $ 考虑组合意义。我们现在给定 \(n\) 个不同的球。

  • 左式。表示:我们在 \(n\) 个球中钦定 \(3\) 个球,再在 \(n\) 个球中选出 \(k\) 个,且保证我们钦定的 \(3\) 个球中至少有 \(1\) 个球被选了的方案数。
  • 右式。表示:我们在 \(n\) 个球中钦定 \(3\) 个球,记作 \(a, b, c\),不必考虑 \(a, b, c\) 的顺序。则 \(\dbinom{n - 1} {k - 1}\) 可看为在 \(n\) 个球中选出 \(k\) 个且必选 \(a\) 的方案数,且 \(\dbinom{n - 2} {k - 1}\) 可看为在 \(n\) 个球中选出 \(k\) 个且必选 \(b\)、必不选 \(a\) 的方案数,\(\dbinom{n - 3} {k - 1}\) 可看为在 \(n\) 个球中选出 \(k\) 个且必选 \(c\)、必不选 \(a,b\) 的方案数。三式求和即为 \(n\) 个球中选 \(k\) 个,且 \(a, b, c\) 至少出现一个的方案数。

不难发现左式、右式意义相同,得证。


Task 6

\(\mathcal{Prob:}\) 设 \(n\) 为正整数,证明:\({\large \sum \limits_{k = 0}^n} (-1)^k \dbinom {n} {k} ^ 2 = \begin{cases} 0, n = 2m - 1, m \in \mathbb{Z}^+ \\ (-1)^m \dbinom{2m}{m}, n = 2m, m \in \mathbb{Z}^+ \end{cases}\)。

\(\mathcal{Sol:}\) 分奇偶两类证明。

  • 若 \(n = 2m - 1, m \in \mathbb{Z}^+\),即 \(n\) 为奇数。则可知 \((-1)^k = -(-1)^{n - k}, k \in [0, n]\)。又因为 \(\dbinom {n} {k} = \dbinom {n} {n - k}, k \in [0, n]\),所以原式可化为 \({\large \sum \limits_{k = 0}^{\lfloor \frac {n} {2} \rfloor}} (-1)^k \dbinom {n} {k} ^2 + (-1)^{n - k} \dbinom {n} {n - k} ^2\), 即 \({\large \sum \limits_{k = 0}^{\lfloor \frac {n} {2} \rfloor}} (-1)^k \dbinom {n} {k} ^2 - (-1)^k \dbinom {n} {k} ^2\),这显然等于 \(0\)。

  • 若 \(n = 2m, m \in \mathbb{Z}^+\),即 \(n\) 为偶数。考虑贴合二项式定理构造一个 \(n\) 次 shabby 恒等式 \((x - 1)^n(x + 1)^n = (x^2 - 1)^n\)。

    再利用二项式定理展开,即 \({\large \sum \limits_{k = 0}^n}(-1)^k \dbinom {n} {k} x^k \times {\large \sum \limits_{k = 0}^n} \dbinom {n} {k}x^k = {\large \sum \limits_{k = 0}^n}(-1)^k \dbinom {n} {k} x^{2k}\)。

    考虑到恒等的条件,左右相同未知量的相同系数前的系数相同。且联系到右式的 \(x^{2k}\) 项以及 \(n = 2m, m \in \mathbb{Z}^+\) 的条件,不难想到左右两项均构造 \(x^n\) 这一项,并分别提取出该项的系数。

    故可知 \({\large \sum \limits _{k = 0} ^{n} (-1)^k \dbinom {n} {k} x^k \dbinom {n} {n - k} x^{n - k}} = (-1)^m \dbinom {n} {m}x^n\),即 \({\large \sum \limits _{k = 0} ^{n} (-1)^k \dbinom {n} {k}^2 x^n} = (-1)^m \dbinom {n} {m}x^n\)。故 \({\large \sum \limits _{k = 0} ^{n} (-1)^k \dbinom {n} {k}^2} = (-1)^m \dbinom {n} {m}\)。


Task 7

\(\mathcal{Prob:}\) 求出等于下列表达式的二项式系数(组合数):\(\dbinom {n} {k} + 3 \dbinom {n} {k - 1} + 3 \dbinom {n} {k - 2} + \dbinom {n} {k - 3}。\)

\(Sol:\) 原式可化为 \(\dbinom {3} {0} \dbinom {n} {k} + \dbinom {3} {1} \dbinom {n} {k - 1} + \dbinom {3} {2} \dbinom {n} {k - 2} + \dbinom {3} {3}\dbinom {n} {k - 3}\)。

分别为四个组合数的积赋予组合意义。分别指:

  • 在 \(n\) 个互不相同的球里选出 \(k\) 个,在另外的 \(3\) 个互不相同的球里毛线都不选的方案总数。
  • 在 \(n\) 个互不相同的球里选出 \(k - 1\) 个,在另外的 \(3\) 个互不相同的球里选出 \(1\) 个的方案总数。
  • 在 \(n\) 个互不相同的球里选出 \(k - 2\) 个,在另外的 \(3\) 个互不相同的球里选出 \(2\) 个的方案总数。
  • 在 \(n\) 个互不相同的球里选出 \(k - 3\) 个,在另外的 \(3\) 个互不相同的球里选出 \(3\) 个的方案总数。

加起来就是在 \(n + 3\) 个互不相同的球里选出 \(k\) 个的方案总数,即 \(\dbinom {n + 3} {k}\)。


Task 8

\(\mathcal{Prob:}\) 证明:\(\dbinom {r} {k} = \dfrac {r} {r - k} \dbinom {r - 1} {k}, r \in \mathbb{R}, k \in \mathbb{Z}, r \neq k\)。

\(\mathcal{Sol:}\) skipped.


Task 9

\(\mathcal{Prob:}\) 求和:\(1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \dots + (-1)^n \dfrac {1} {n + 1} \dbinom {n} {n}\)。

\(\mathcal{Sol:}\) 原式可化为 \({\large \sum \limits_{k = 0}^{n}}(-1)^k \dfrac {1} {k + 1} \dbinom {n} {k}\),即 \({\large \sum \limits_{k = 0}^{n}} (-1)^k \dfrac {1} {k + 1} \dfrac {k + 1} {n + 1} \dbinom {n + 1} {k + 1} = \dfrac {\sum \limits _{k = 0}^{n} (-1)^k \binom {n + 1} {k + 1}} {n + 1}\)。

注意到分子 \({\large \sum \limits _{k = 0}^{n}} (-1)^k \dbinom {n + 1} {k + 1} = {\large \sum \limits _{k = 1}^{n + 1}} (-1)^{k + 1} \dbinom {n + 1} {k} = -{\large \sum \limits _{k = 1}^{n + 1}} (-1)^k \dbinom {n + 1} {k}\)。

即 \(-{\large \sum \limits _{k = 0}^{n + 1}} (-1)^{k} \dbinom {n + 1} {k} + (-1)^0 \dbinom {n + 1} {0} = -(1 + (-1))^n + 1 = 1\)。

故原式等于 \(\dfrac {1} {n + 1}\)。


Task 10

\(\mathcal{Prob:}\) 证明 \({\large \sum \limits _{i = 0}^{n}} \dbinom {i} {k} = \dbinom {n + 1} {k + 1}\),及 \(m^2 = 2 \dbinom {m} {2} + \dbinom {m} {1}\)。

\(\mathcal{Sol:}\)

  • 前者,即变上项求和,考虑赋予其组合意义:有 \(n + 1\) 个球,考虑最后一个球取第 \(i + 1\) 个,且在前 \(i\) 个当中取 \(k\) 个球的方案数,即 \(\dbinom {i} {k}\)。并对于每一个 \(i,i \in [1, n]\) ,我们将方案数累加起来,即 \({\large \sum \limits _{i = 0}^{n}} \dbinom {i} {k}\)。不难发现这就是在 \(n + 1\) 个球中取出 \(k + 1\) 个的方案数,即 \(\dbinom {n + 1} {k + 1}\)。
  • 后者,考虑赋予其组合意义:在 \(m\) 个数中取出 \(2\) 个(可重)构成有序数对的方案数,即 \(m^2\)。可以等价转换为在 \(m\) 中选出 \(2\) 个数(不可重)构成有序数对的方案数与在 \(m\) 个选 \(1\) 个数构成有序数对的方案数之和,即 \(2 \dbinom {m} {2} + \dbinom {m} {1}\)。

Task 11

\(\mathcal{Prob:}\) 求整数 \(a,b,c\),使得对于所有的 \(m\) 有 \(m^3 = a \dbinom {m} {3} + b \dbinom {m} {2} + c \dbinom {m} {1}\)。

\(\mathcal{Sol:}\) 本质上就是要使右式表示在 \(m\) 个数中选 \(3\) 个数 (可重)构成有序三维数对的方案数。详解见 Task 10。

可容易得到:\(a = 6, b = 6, c = 1\)。


Task 12

\(\mathcal{Prob:}\) 设 \(n, k\) 为整数且满足 \(1 \leq k \leq n\)。证明:\({\large \sum \limits _{k = 1}^{n}} \dbinom {n} {k} \dbinom {n} {k - 1} = \dfrac {1} {2} \dbinom {2n + 2} {n + 1} - \dbinom {2n} {n}\)。

\(\mathcal{Sol:}\) 左式显然可理解为在 \(2n\) 个球中选出 \(n + 1\) 个球的方案总数,即 \(\dbinom {2n} {n + 1}\)。

右式可利用 “吸收公式“ 化为 \(\dbinom{2n + 1} {n} - \dbinom {2n} {n}\),再利用 Pascal 可化为 \(\dbinom {2n} {n + 1}\),即等于左式。


Task 13

\(\mathcal{Prob:}\) 设 \(n, k\) 为整数,试证明:\({\large \sum \limits _{k = 1}^{n}} k \dbinom {n} {k}^2 = n \dbinom {2n - 1} {n - 1}\)。

\(\mathcal{Sol:}\) 左式可化为:\({\large \sum \limits _{k = 1}^{n}} k \dbinom {n} {k} \dbinom {n} {n - k}\),即 \(n{\large \sum \limits _{k = 1}^{n}} \dbinom {n - 1} {k - 1} \dbinom {n} {n - k}\)。

赋予其组合意义:在 \(2n - 1\) 个数中选出 \(n - 1\) 个的方案数的 \(n\) 倍,即右式。

Solution -「二项式定理与组合恒等式」一些练习的更多相关文章

  1. Solution -「树上杂题?」专练

    主要是记录思路,不要被刚开始错误方向带偏了 www 「CF1110F」Nearest Leaf 特殊性质:先序遍历即为 \(1 \to n\),可得出:叶子节点编号递增或可在不改变树形态的基础上调整为 ...

  2. Solution -「SV 2020 Round I」SA

    \(\mathcal{Description}\)   求出处 owo.   给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \( ...

  3. Solution -「SV 2020 Round I」「SRM 551 DIV1」「TC 12141」SweetFruits

    \(\mathcal{Description}\)   link.   给定 \(n\) 个水果,每个结点可能有甜度 \(v_i\),或不甜(\(v_i=-1\)).现在把这些水果串成一棵无根树.称一 ...

  4. Solution -「USACO 2020.12 P」Spaceship

    \(\mathcal{Description}\)   Link.   Bessie 在一张含 \(n\) 个结点的有向图上遍历,站在某个结点上时,她必须按下自己手中 \(m\) 个按钮中处于激活状态 ...

  5. Solution -「USACO 2020.12 P」Sleeping Cows

    \(\mathcal{Description}\)   Link.   有 \(n\) 个牛棚,大小为 \(t_{1..n}\),\(n\) 头奶牛,大小为 \(s_{1..n}\),奶牛只能住进不小 ...

  6. Solution -「最大权闭合子图」做题随笔

    T1 小 M 的作物 先从简化题目入手,考虑先去掉 \(c\) 的额外收益.然后尝试将所有作物种在 \(B\), 则目前得到了 \(\sum \limits_{i = 1} ^n b_i\) 的收益. ...

  7. Solution -「GLR-R2」教材运送

    \(\mathcal{Description}\)   Link.   给定一棵包含 \(n\) 个点,有点权和边权的树.设当前位置 \(s\)(初始时 \(s=1\)),每次在 \(n\) 个结点内 ...

  8. Linux 小知识翻译 - 「协议(protocol)」

    对于理解服务器和网络来说,「协议」是不可缺少的概念. 「协议(protocol)」有「规则,规定」的意思. 实际上「协议」的函数很广,在通信领域,「协议」规定了「在通信时,什么样的情况下,以什么样的顺 ...

  9. 「kuangbin带你飞」专题十四 数论基础

    layout: post title: 「kuangbin带你飞」专题十四 数论基础 author: "luowentaoaa" catalog: true tags: mathj ...

随机推荐

  1. Oracle查看表空间大小

    遇到报错 java.sql.SQLException: ORA-01653: 表 MESHIS.HIS_RET_LOT_FQC 无法通过 8 (在表空间 MESHIS_DATA_TBS 中) 扩展 a ...

  2. .NET混合开发解决方案7 WinForm程序中通过NuGet管理器引用集成WebView2控件

    系列目录     [已更新最新开发文章,点击查看详细] WebView2组件支持在WinForm.WPF.WinUI3.Win32应用程序中集成加载Web网页功能应用.本篇主要介绍如何在WinForm ...

  3. 探索ABP基础架构

    为了了解应用程序是如何配置和初始化,本文将探讨ASP.NET Core和ABP框架最基本的构建模块.我们将从 ASP.NET Core 的 Startup类开始了解为什么我们需要模块化系统,以及 AB ...

  4. @ConfigurationProperties(prefix = "server-options") 抛出 SpringBoot Configuration Annotation Processor not configured 错误

    说明 spring-boot-configuration-processor 包的作用是自动生成 META-INF/spring-configuration-metadata.json 文件,而这个 ...

  5. awk应用场景之过滤举例

    以/etc/passwd举例,passwd文本 [root@196 tmp]# cat /etc/passwd root:x:0:0:root:/root:/bin/bash bin:x:1:1:bi ...

  6. linux篇-centos7安装samba服务器

    1查看是否安装samba服务 2如果为空则没有安装,安装显示安装完成即成功 3查看samba状态 4查看配置文件的位置 5配置文件备份,直接传输到本地备份 6修改配置文件 Path共享目录位置 Val ...

  7. 每天一个 HTTP 状态码 103

    103 Early Hints 103 Earyly Hints 是被用于在最终 HTTP 消息前返回一些响应头,常和 HTTP Header: Link 一起使用,让客户端在服务器还在准备(当前的这 ...

  8. 差分隐私(Differential Privacy)定义及其理解

    1 前置知识 本部分只对相关概念做服务于差分隐私介绍的简单介绍,并非细致全面的介绍. 1.1 随机化算法 随机化算法指,对于特定输入,该算法的输出不是固定值,而是服从某一分布. 单纯形(simplex ...

  9. Python趣味入门9:函数是你走过的套路,详解函数、调用、参数及返回值

    1.概念 琼恩·雪诺当上守夜人的司令后,为训练士兵对付僵尸兵团,把成功斩杀僵尸的一系列动作编排成了"葵花宝典剑法",这就是函数.相似,在计算机世界,一系列前后连续的计算机语句组合在 ...

  10. 用树莓派USB摄像头做个监控

    [前言] 看着阴暗的角落里吃灰噎到嗓子眼的树莓派,一起陪伴的时光历历在目,往事逐渐涌上心头,每每触及此处,内心总会升腾起阵阵怜悯之情... 我这有两个设备,一个是积灰已久的树莓派,另一个是积灰已久的U ...