这道题是我去年11月份的时候看到的,当时写了一个假的做法没过样例,然后就没管了。

结果今天在模拟赛的时候放到了 T1(

我也不知道他为什么是对的,可是他就是过了样例和大样例.jpg

容易发现 \(n\) 个矩形的边,将整个矩形划分成了 \((2n)^2\) 个小矩形。这样方便对每个小矩形考虑。

发现一个矩形的限制相当于限制了一车矩形的最大值,所以我们可以做一个 \(O(n^3)\) 的暴力得到每个小矩形的最大值是多少。

我们将最大值限制相同的小矩阵拉出来一起考虑。同时把限制为这个值的 \(O(n)\) 个矩阵拉出来。

看到数据范围 \(n=10\),考虑对这些限制值的矩阵容斥。

设 \(f[S]\) 为选取的矩阵的最大值不为 \(v\) 的方案,那么其他矩阵可以随便乱放。

这一部分的答案就是 \(\sum(-1)^{|S|}f[S]\),而 \(f[S]\) 跑一个暴力是很容易计算的。

我们就做到了 \(O(n^32^n)\),并且还跑不满(

//我也不知道他为什么是对的,可是他就是过了样例和大样例
#include<algorithm>
#include<cstdio>
const int M=15,mod=1e9+7;
int n,V,x,y,lx,ly,len,ppc[1<<M],tx[M<<1],ty[M<<1],mx[M<<1][M<<1];
bool vis[M<<1][M<<1];
struct mat{
int l1,l2,r1,r2,v;//(l1,r1]*(l2,r2]
inline bool operator<(const mat&it)const{
return v<it.v;
}
}m[M],t[M];
inline int pow(int a,int b=mod-2){
int ans(1);for(;b;b>>=1,a=1ll*a*a%mod)if(b&1)ans=1ll*ans*a%mod;return ans;
}
inline int min(const int&a,const int&b){
return a>b?b:a;
}
inline int Solve(const int&v){
int ans(0),sum(0);
for(int i=2;i<=lx;++i)for(int j=2;j<=ly;++j){
if(mx[i][j]==v)sum+=(tx[i]-tx[i-1])*(ty[j]-ty[j-1]);
}
for(int S=0;S<(1<<len);++S){
int cnt(0);
for(int i=0;i<len;++i)if(S>>i&1){
for(int x=t[i+1].l1+1;x<=t[i+1].r1;++x){
for(int y=t[i+1].l2+1;y<=t[i+1].r2;++y){
if(mx[x][y]==v&&!vis[x][y])cnt+=(tx[x]-tx[x-1])*(ty[y]-ty[y-1]),vis[x][y]=true;
}
}
}
for(int i=2;i<=lx;++i)for(int j=2;j<=ly;++j)vis[i][j]=false;
if(ppc[S]&1)ans=(ans+1ll*(mod-pow(v-1,cnt))*pow(v,sum-cnt))%mod;
else ans=(ans+1ll*pow(v-1,cnt)*pow(v,sum-cnt))%mod;
}
return ans;
}
signed main(){
freopen("matrix.in","r",stdin);
freopen("matrix.out","w",stdout);
int T;scanf("%d",&T);
for(int i=1;i<1024;++i)ppc[i]=ppc[i>>1]+(i&1);
while(T--){
int ans(1);
scanf("%d%d%d%d",&x,&y,&V,&n);lx=ly=0;
tx[++lx]=0;tx[++lx]=x;ty[++ly]=0;ty[++ly]=y;
for(int i=1;i<=n;++i){
scanf("%d%d%d%d%d",&m[i].l1,&m[i].l2,&m[i].r1,&m[i].r2,&m[i].v);
--m[i].l1;tx[++lx]=m[i].l1;tx[++lx]=m[i].r1;
--m[i].l2;ty[++ly]=m[i].l2;ty[++ly]=m[i].r2;
}
std::sort(m+1,m+n+1);
std::sort(tx+1,tx+lx+1);lx=std::unique(tx+1,tx+lx+1)-tx-1;
std::sort(ty+1,ty+ly+1);ly=std::unique(ty+1,ty+ly+1)-ty-1;
for(int i=1;i<=n;++i){
m[i].l1=std::lower_bound(tx+1,tx+lx+1,m[i].l1)-tx;
m[i].r1=std::lower_bound(tx+1,tx+lx+1,m[i].r1)-tx;
m[i].l2=std::lower_bound(ty+1,ty+ly+1,m[i].l2)-ty;
m[i].r2=std::lower_bound(ty+1,ty+ly+1,m[i].r2)-ty;
}
for(int i=2;i<=lx;++i)for(int j=2;j<=ly;++j)mx[i][j]=0x7fffffff;
for(int id=1;id<=n;++id){
for(int i=m[id].l1+1;i<=m[id].r1;++i){
for(int j=m[id].l2+1;j<=m[id].r2;++j){
mx[i][j]=min(mx[i][j],m[id].v);
}
}
}
for(int i=1;i<=n;++i){
if(i!=1&&m[i].v!=m[i-1].v)ans=1ll*ans*Solve(m[i-1].v)%mod,len=0;t[++len]=m[i];
}
ans=1ll*ans*Solve(m[n].v)%mod;len=0;
for(int i=2;i<=lx;++i)for(int j=2;j<=ly;++j){
if(mx[i][j]==0x7fffffff)ans=1ll*ans*pow(V,(tx[i]-tx[i-1])*(ty[j]-ty[j-1]))%mod;
}
printf("%d\n",ans);
}
}

LGP3813题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. MySQL 数据库的tab 补全功能 (懒人必备)

    MySQL 数据库的tab补全功能                      跟着步骤走~~ 懒人养成第一步 不仅帮你补全 甚至预判你的预判,就问你可怕不可怕 1.安装相关依赖软件(需要配置yum官方 ...

  2. 如何快速为团队打造自己的组件库(上)—— Element 源码架构

    文章已收录到 github,欢迎 Watch 和 Star. 简介 详细讲解了 ElementUI 的源码架构,为下一步基于 ElementUI 打造团队自己的组件库打好坚实的基础. 如何快速为团队打 ...

  3. Linux基础入门笔记

    今天带来Linux入门的一些基础的笔记,科班出身的同学们,Linux已经成为了必修课了,下面我带来关于Linux的相关入门知识以及Linux简单的介绍! Linux内核最初只是由芬兰人林纳斯·托瓦兹( ...

  4. Python解释器安装、多版本共存以及手动添加环境变量教程

    Python解释器安装.多版本共存以及手动添加环境变量教程 一.Python解释器下载 1. 先进入官网(python.org) 下图为网站的主页,依次按顺序点击"①Download&quo ...

  5. 《PHP程序员面试笔试宝典》——如何回答算法设计问题?

    如何巧妙地回答面试官的问题? 本文摘自<PHP程序员面试笔试宝典> 程序员面试中的很多算法设计问题,都是历年来各家企业的"炒现饭",不管求职者以前对算法知识掌握得是否扎 ...

  6. Solution -「CF 1060F」Shrinking Tree

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的树,反复随机选取一条边,合并其两端两点,新点编号在两端两点等概率选取.问每个点留到最后的概率.    ...

  7. 如何在TypeScript/JavaScript项目里引入MD5校验和

    摘要:MD5校验和则是其中一种数学算法,通常是使用工具对文件计算得出的一组32 个字符的十六进制字母和数字. 本文分享自华为云社区<TypeScript/JavaScript项目里如何做MD5校 ...

  8. 使用IDEA新建一个Spring Boot项目

    本文使用Spring Initializer来创建 开发环境 操作系统:Windows 10 IDEA:2020.3.2 JDK:1.8 1. 启动IDEA,选择New Project(新建工程): ...

  9. 设置maven创建工程的jdk编译版本

    方式一:在maven的主配置文件中指定创建工程时使用jdk1.8版本 <profile> <id>jdk-1.8</id> <activation> & ...

  10. 【C#基础概念】函数参数默认值和指定传参和方法参数

    函数参数默认值和指定传参 最近在编写代码时发现介绍C#参数默认值不能像PL/SQL那样直接设置default,网上也没有太多详细的资料,自己琢磨并试验后整理成果如下: C#允许在函数声明部分定义默认值 ...