CF1781D 解题乱弹
abc1057510554 老师说,搞这种数论题,就可以在 CF 上 number theory 板刷一个 1300-1900 就可以了。
然后发现连 1800 的题都做不出来,我可以退役力 QAQ
观察到 \(n\) 很小,也就是说我们甚至可以用 \(O(n^4)\) 的算法爆过去,但是这是一道数论题,不是让我们用暴力乱堆堆过去的,所以我们来考虑一下性质。
平方和和加法运算能有什么关系呢……没有关系啊……反正我们 \(n\) 很小,我们可以枚举一下 \(a\) 的元素。首先我们达成共识答案肯定至少为 \(1\),然后我们看看答案能否为 \(2\)——枚举一个 \(a_i, a_j(a_i > a_j)\)。
我们令 \(a_i + x = p^2, a_j + x = q^2,a_i - a_j = p^2 - q^2 = (p+q)(p - q)\)
这下就明晰了!枚举 \(a_i, a_j(a_i > a_j)\),对它们差枚举因子,就能搞出来 \(p, q\),进而就可以计算出 \(x\),然后对整个序列都用这个 \(x\) 计算一遍就好了。
时间复杂度?枚举 \(a_i, a_j\) 是 \(O(n^2)\),质因子 \(O(\sqrt{SIZE})\)(当然达不到这个复杂度),最后再统计一下是 \(O(n)\) 的,总共的时间复杂度就是 \(O(n^3\sqrt{SIZE})\)。这是理论上界,实践是远远达不到的,因为 \(a_i - a_j\) 不可能永远都顶到 \(1e9\)。跑不满,\(n\) 又很小,问题不大 qwq。
//SIXIANG
#include <iostream>
#include <cmath>
#define MAXN 100000
#define int long long
#define QWQ cout << "QWQ" << endl;
using namespace std;
int a[MAXN + 10], ans = 0, n;
bool judge(int x) {
int st = sqrt(x);
return (st * st == x);
}
void count(int x) {
int cnt = 0;
for(int p = 1; p <= n; p++)
cnt += judge(a[p] + x);
ans = max(ans, cnt);
}
void work(int x, int id1, int id2) {
for(int i = 1; i * i <= x; i++) {
if(x % i == 0) {
int j = x / i;
if(!((i + j) & 1)) {
int p = (i + j) / 2;
int q = j - p;
int X1 = p * p - a[id1], X2 = q * q - a[id2];
if(X1 == X2 && X1 >= 0)//X 要大于等于 0,而且 p^2 - a[i] 要等于 q^2 - a[j]
count(X1);
swap(p, q);
X1 = p * p - a[id1], X2 = q * q - a[id2];
if(X1 == X2 && X1 >= 0)
count(X1);
}
}
}
}
void init() {
ans = 0;
cin >> n;
for(int p = 1; p <= n; p++)
cin >> a[p];
for(int p = 1; p <= n; p++)
for(int i = p + 1; i <= n; i++) {
int x = a[p] - a[i], cp = p, ci = i;
if(x < 0) x = -x, swap(cp, ci);
work(x, cp, ci);
}
cout << max(ans, 1ll) << endl;
}
signed main() {
int T; cin >> T;
while(T--) {
init();
}
}
CF1781D 解题乱弹的更多相关文章
- SCNU ACM 2016新生赛决赛 解题报告
新生初赛题目.解题思路.参考代码一览 A. 拒绝虐狗 Problem Description CZJ 去排队打饭的时候看到前面有几对情侣秀恩爱,作为单身狗的 CZJ 表示很难受. 现在给出一个字符串代 ...
- SCNU ACM 2016新生赛初赛 解题报告
新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...
- HDU 3791二叉搜索树解题(解题报告)
1.题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=3791 2.参考解题 http://blog.csdn.net/u013447865/articl ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
- CH Round #56 - 国庆节欢乐赛解题报告
最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...
- wechall.net/stegano 解题心得
/* 转载请注明出处:http://www.cnblogs.com/Martinium/p/wechall_stegano.html */ 最近迷上了 www.wechall.net 网站,里面都是些 ...
- Mountains(CVTE面试题)解题报告
题目大意: 用一个数组代表群山的高度.高度大的地方代表山峰,小的地方代表山谷.山谷可以容水.假设有一天下了大雨,求群山中总共可以容纳多少水? 如图所示情况,a代表该数组,总共可以容纳5个水. 解题思路 ...
- timus 1180. Stone Game 解题报告
1.题目: 1180. Stone Game Time limit: 1.0 secondMemory limit: 64 MB Two Nikifors play a funny game. The ...
- timus 1175. Strange Sequence 解题报告
1.题目描述: 1175. Strange Sequence Time limit: 1.0 secondMemory limit: 2 MB You have been asked to disco ...
- ACM 杭电HDU 2084 数塔 [解题报告]
数塔 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submissi ...
随机推荐
- 【每日一题】【动态规划,递推式与公共子串的区别】2022年1月31日-NC92 最长公共子序列(二)
描述 给定两个字符串str1和str2,输出两个字符串的最长公共子序列.如果最长公共子序列为空,则返回"-1".目前给出的数据,仅仅会存在一个最长的公共子序列 方法1: impor ...
- TypeScript 之 Type
Type 描述:全称叫做 '类型别名',为类型字面量提供名称.比 Interface 支持更丰富的类型系统特性. Type 与 Interface 区别 Interface 只能描述对象的形状,Typ ...
- C#关于委托的一些事,开发日志
----- 委托是什么------ 其实委托事件很好理解,就当成是c语言中的函数指针或者是回调函数,或者说换种理解方式,信号和槽?触发器和接收器?总之就是一个地方调用了这个函数,那么在另一个地方也会调 ...
- Burp Suite进阶
1.Scanner Burp Scanner主要用于自动检测Web系统的各种漏洞. 首先,确认Burp Suite正常启动并完成浏览器代理的配置.然后进入Burp Proxy,关闭拦截代理功能,快速浏 ...
- MongoDB 强制使用索引 hint
转载请注明出处: 虽然MongoDB 查询优化器一般工作的很不错,但是也可以使用 hint() 来强迫 MongoDB 使用一个特定的索引.在这种方法下某些情形下会提升性能. 一个有索引的 colle ...
- 一个实现单线程/多线程下代码调用链中传递数据的处理类: CallContext(LogicalSetData,LogicalGetData),含.net core的实现
详情请参考原文:一个实现单线程/多线程下代码调用链中传递数据的处理类: CallContext
- ACWJ_00扫描器
第一部分:词法扫描介绍 我们从一个简单的词汇扫描器开始我们的编译器编写之旅.正如我在之前部分所提到的,扫描器的任务是从输入语言中(用来编译的语句)识别词法元素或者是符号. 我们将定义一个只有5 ...
- 生成1-n之间的随机数-猜数字小游戏
生成1-n之间的随机数 获取随机数 获取1-n之间的随机数,包含n,代码如下: // 导包 import java.util.Random; public class Test01Random { p ...
- postman的安装与使用
一.在浏览器搜索postman找到官网 二.选择自己电脑的操作系统 三.点击下载按钮 完成下载之后双击安装程序即可完成安装操作自动下载到C盘,无法自定义安装 四.安装完成之后自动跳出该页面 我们在学习 ...
- 命令行部署repmgr管理集群+switchover+切换测试
本次部署未使用securecmd/kbha工具.无需普通用户到root用户的互信. 建立系统数据库安装用户组及用户,在所有的节点执行 root用户登陆服务器,创建用户组及用户并且设置密码 [root@ ...