风湿性疾病, 药物和新冠指南

原文网址:

https://rheumnow.com/news/rheumatic-diseases-drugs-and-covid-19-guidelines

Aug 13, 2020 10:28 am

最近, 多家刊物聚焦于感染新冠(SARs-CoV-2)的风湿性疾病(RDD)和自身免疫性疾病患者的风险和结局。这些观察性研究均接踵于全球风湿联盟(Global Rheumatology Alliance)的一篇原创,该研究显示,在600例RDD患者中,使用DMARDs或生物制剂不会影响新冠感染者住院风险,但使用糖皮质激素的新冠住院风险高两倍,而TNFi应用者则风险降低60%(PMID: 32471903)。以下是最近论文的摘要和节录,这些论文也探讨了RDD患者的COVID风险和结局。(由此产生的)问题是--我们是否需要更新或修改当前的ACR和风湿病指南?

现患风湿病患者中新冠病情严重度的决定因素 (PMID: 32720259) - 西班牙一项对3711例住院新冠患者进行的前瞻性观察性研究, 其中38例(10%)患有风湿性或肌肉骨骼疾病。结果表明,炎症和新冠活动度的标记物(CRP, D-Dimer, LDH, 铁蛋白)与新冠严重度和死亡率有关, RDD活动度可能也相关, 而DMARDs和生物制剂与较差结局无相关性。

炎性关节炎患者的新冠感染 (PMID: 32725762)- 期刊A&R报告了有新冠感染症状的103例炎性关节炎患者, 26例住院,4人死亡。 那些口服糖皮质激素患者接受住院治疗的可能性更高(P <0.001),而那些用抗细胞因子的生物制剂治疗者则没有。

自身免疫性炎症性风湿病(AIRD)患者的新冠住院风险 (PMID: 32769150)- 对123例感染新冠的AIRD患者进行的一项观察性研究, 54例(44%)需要住院, 12例死亡(22%)。 年龄较大(OR:1.08; p = 0.00)和AIRD(OR:3.55; p = 0.01)是住院的高危因素,而应用DMARDs药物不是住院的风险因素。

接受免疫调节治疗患者中的新冠感染 (PMID: 32759259)- Winthrop等人的报告描述了针对传染病医生的调查,其中38名医生对超过2500例患者进行新冠筛查,有77(3%)例正在应用免疫调节药治疗RA(19,24.7%)、溃疡性结肠炎(5, 6.5%)和结节病(5,6.5%)。 在新冠确诊时,有31例(40%)正在使用生物疗法, 包括TNFi(n = 16)、利妥昔单抗(n = 6)、阿巴西普(n = 2)、托珠单抗(n = 2)和其它(n = 5)。 在基线时使用非生物制剂的46例患者(60%)中,使用了以下疗法:JAK抑制剂(3,6.5%),DMARDs(11,24%)和泼尼松(5,11%) 。 总体而言,有82%的患者住院,12%的患者死亡。 有趣的是,他们在使用TNFi或JAK抑制剂的小样本队列中未发现死亡病例。

与那些携有已知风险因素(例如年龄、心血管疾病、糖尿病)的新冠感染者不同,那些患有“活动性” RDD或AIRD的患者若感染新冠则结局糟糕,更多住院、疾病更严重,甚至死亡。 除外糖皮质激素,我们用于治疗AIRD和RDD的疗法不会使预后恶化,并且, TNF抑制剂、阿那白滞素,可能还有托珠单抗或JAK抑制剂,可能是保护性的。 我们应更新有关新冠管理的风湿病指南,以免在感染新冠的患者中反射性地停用DMARDs或生物制剂。

DrCush_0813_风湿性疾病, 药物和新冠指南的更多相关文章

  1. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  2. 数据、人工智能和传感器按COVID-19新冠流感排列

    数据.人工智能和传感器按COVID-19新冠流感排列 Data, AI and sensors arrayed against COVID-19 各国政府.卫生保健专业人士和工业界争先恐后地应对Cov ...

  3. PGL图学习之项目实践(UniMP算法实现论文节点分类、新冠疫苗项目实战,助力疫情)[系列九]

    原项目链接:https://aistudio.baidu.com/aistudio/projectdetail/5100049?contributionType=1 1.图学习技术与应用 图是一个复杂 ...

  4. Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...

  5. Python小白的数学建模课-B4. 新冠疫情 SIR模型

    Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...

  6. SIR模型预测新冠病毒肺炎发病数据

    大家还好吗? 背景就不用多说了吧?本来我是初四上班的,现在延长到2月10日了.这是我工作以来时间最长的一个假期了.可惜哪也去不了.待在家里,没啥事,就用python模拟预测一下新冠病毒肺炎的数据吧.要 ...

  7. iMX287A基于嵌入式Qt的新冠肺炎疫情监控平台

    目录 1.前言 2.数据接口的获取 3.Qt界面的实现 4.在开发板上运行Qt程序 5.最终效果 6.代码下载 @ 1.前言 之前我使用在桌面版本Qt实现了肺炎疫情监控平台:基于Qt的新冠肺炎疫情数据 ...

  8. 参加Folding@Home(FAH)项目,为战胜新冠肺炎贡献出自己的一份力量

    鉴于新冠病毒(COVID-19)在全球范围内的大规模传播,PCMR和NVIDIA呼吁全球PC用户加入Folding@home项目贡献自己闲置的GPU计算力,协助抗击新冠状病毒疫情. 目前全球有超过40 ...

  9. 面试刷题26:新冠攻击人类?什么攻击java平台?

    可恶的新冠病毒攻击人类,搞得IT就业形势相当不好?好在有钟南山院士带领我们提前开展好了防护工作! java作为基础平台安装在各种移动设备,PC,小型机,分布式服务器集群,各种不同的操作系统上.所以,对 ...

  10. Python模块---制作新冠疫情世界地图()

    目录 pyecharts模块 简介 安装pyecharts 测试pyecharts模块 pyecharts实战:绘制新冠肺炎疫情地图 需求分析 请求数据 提取数据 处理数据 制作可视化地图 设置可视化 ...

随机推荐

  1. Python + logging 控制台有日志输出,但日志文件中数据为空

    源码: def output(self, level, message): fh = logging.FileHandler(self.logpath, mode='a', encoding='utf ...

  2. Django 连接各数据库配置汇总(sqlite3,MySql,Oracle)

    在django中,默认配置的数据库是 sqlite3 # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#database ...

  3. Clickhouse表引擎探究-ReplacingMergeTree

    作者:耿宏宇 1 表引擎简述 1.1 官方描述 MergeTree 系列的引擎被设计用于插入极大量的数据到一张表当中.数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合 ...

  4. uniapp中请求接口问题

    在main.js文件中配置: //Vue.prototype.$baseUrl="http://192.168.1.164/api" //线下接口 Vue.prototype.$b ...

  5. 痞子衡嵌入式:对比恩智浦全系列MCU(包含Kinetis/LPC/i.MXRT/MCX)的GPIO电平中断设计差异

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦全系列MCU(包含Kinetis, LPC, i.MXRT, MCX)的GPIO电平中断设计差异. 在痞子衡旧文 <以i.M ...

  6. Mybatis-9.28

    Mybatis-9.28 环境: JDK1.8 Mysql 5.7 maven 3.6.1 IDEA 回顾: JDBC Mysql Java基础 Maven Junit SSM框架:配置文件的. 最好 ...

  7. [0x11] 130.火车进站问题【卡特兰数】

    题意 link(more:129.,P1044) 简化题意:给定严格从 \(1\thicksim n\) 这 \(n(n\leqslant 6\times10^4)\) 个整数,规定每个数都要进出栈各 ...

  8. [编程基础] Python随机数生成模块总结

    Python随机数生成模块教程演示如何在Python中生成伪随机数. 1 介绍 1.1 随机数字生成器 随机数生成器(RNG)生成一组在外观上不显示任何可区分模式的值.随机数生成器分为两类:硬件随机数 ...

  9. pycharm下载安装与基本配置

    pycharm下载安装与基本配置 1.简介 PyCharm是一种Python IDE(Integrated Development Environment,集成开发环境),带有一整套可以帮助用户在使用 ...

  10. elasticsearch之search template

    一.search template简介 elasticsearch提供了search template功能,其会在实际执行查询之前,对search template进行预处理并将参数填充到templa ...