SoftPool使用softmax进行加权池化,能够保持特征的表达性并且是可微操作。从性能和准确率来看,SoftPool是目前的常规池化方法的一个不错的替代品



来源:晓飞的算法工程笔记 公众号

论文: Refining activation downsampling with SoftPool

Introduction


  池化层是当今卷积神经网络的基础算子,用于降低特征图的大小以及网络的计算量,能够达成平移不变性以及增大后续卷积的感受域。目前的池化方法大多基于最大池化或平均池化,虽然计算很快内存占用少,但其有很大的提升空间,主要在于更好地维持特征图的重要信息。

  为此,论文提出了SoftPool,基于softmax加强进行特征图的池化操作。从实验结果来看,SoftPool在保持计算和内存高效的情况下,能够很好的保留特征图的重要信息,提升模型的准确率。

SoftPool Downsampling


  定义大小为\(C\times H\times W\)的特征图\(a\)的局部区域\(R\),\(R\)为2D空间区域,大小等同于池化核大小\(|R|=k^2\),输出为\(\tilde{a}_R\),对应的梯度为\(\Delta \tilde{a}_i\)。

Exponential maximum kernels

  SoftPool的核心思想在于softmax的利用,根据特征值非线性地计算区域\(R\)的特征值权重:

  权重\(w_i\)能够保证重要特征的传递,区域\(R\)内的特征值在反向传递时都至少会有预设的最小梯度。在得到权重\(w_i\)后,通过加权区域\(R\)内的特征值得到输出:

  SoftPool能够很好地参照区域内的激活值分布,服从一定的概率分布,而基于最大池化和平均池化的方法的输出则是无分布的。

Gradient calculation

  SoftPool是可微的,在反向传播计算时,SoftPool梯度根据前向时的激活值比例进行计算,若梯度过小,将直接赋予预设的非零最小梯度值。

Feature preservation

  下采样的目的是在保持特征表达的同时降低分辨率,如果损失了特征的表达,势必会降低整体网络的性能。而论文通过可视化发现,相对于其它池化操作,SoftPool能够很好的保留特征表达,算是最大池化和平均池化的折中。

Spatio-temporal kernels

  论文提到,CNN网络可以扩展处理3D输入,SoftPool也可以进行对应的适配。假设输入的特征维度为\(C\times H\times W\times T\),\(T\)为时间维度,SoftPool的处理区域则从原来的2D区域加上时间维度。

Experiment


[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uvngvuyN-1651209067982)(https://upload-images.jianshu.io/upload_images/20428708-9a069801e6686a6c.png?imageMogr2/auto-orient/strip|imageView2/2/w/1240)]

  SSI、Pix Sim和EMD为3种不同的相似度度量方法,这里主要对比特征的丢失以及计算性能。SoftPool虽然加入了softmax加权,但其速度依然很快。在实现时,先对整图计算\(e^x\),然后将得到的图特征图与原图进行element-wise相乘,然后进行平均池化。

  多种池化方法的对比。

  多个主干网络上的分类准确率对比。

Discussion


  论文列举了许多池化操作的示意图,从图中可以看到,其实SoftPool和早前提出的LIP很像,都是用到了softmax加权,只是LIP额外加了一个小网络对激活值进行线性变换,这么看来,SoftPool可以算是LIP的一个特例。感觉整体论文的内容以及亮点不够多,另外实验部分的baseline的准确率有点低,不知道作者是怎么得来的。

Conclusion


  SoftPool使用softmax进行加权池化,能够保持特征的表达性并且是可微操作。从性能和准确率来看,SoftPool是目前的常规池化方法的一个不错的替代品。





如果本文对你有帮助,麻烦点个赞或在看呗~

更多内容请关注 微信公众号【晓飞的算法工程笔记】

SoftPool:基于Softmax加权的池化操作 | 2021新文的更多相关文章

  1. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  2. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

  3. 【TensorFlow】tf.nn.max_pool实现池化操作

    max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...

  4. 深度学习原理与框架-卷积神经网络基本原理 1.卷积层的前向传播 2.卷积参数共享 3. 卷积后的维度计算 4. max池化操作 5.卷积流程图 6.卷积层的反向传播 7.池化层的反向传播

    卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别       分类                        相似图像搜索                        ...

  5. tensorflow 卷积/反卷积-池化/反池化操作详解

    Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_bac ...

  6. day-16 CNN卷积神经网络算法之Max pooling池化操作学习

    利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...

  7. TensorFlow:tf.nn.max_pool实现池化操作

    tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积 ...

  8. Python3 卷积神经网络卷积层,池化层,全连接层前馈实现

    # -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli " ...

  9. CNN-卷积层和池化层学习

    卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深 ...

随机推荐

  1. Lock 与 Synchronized 的区别?

    首先两者都保持了并发场景下的原子性和可见性,区别则是synchronized的释放锁机制是交由其自身控制,且互斥性在某些场景下不符合逻辑,无法进行干预,不可人为中断等.而lock常用的则有Reentr ...

  2. synchronized 关键字的用法?

    synchronized 关键字可以将对象或者方法标记为同步,以实现对对象和方法的互 斥访问,可以用 synchronized(对象) { - }定义同步代码块,或者在声明方法时 将 synchron ...

  3. 实践中如何优化 MySQL ?

    最好是按照以下顺序优化: 1.SQL 语句及索引的优化 2.数据库表结构的优化 3.系统配置的优化 4.硬件的优化 详细可以查看 阿里 P8 架构师谈:MySQL 慢查询优化.索引优化.以及表等优化

  4. spring boot 自动装配的原理

    参考: https://blog.csdn.net/Dongguabai/article/details/80865599.如有侵权,请联系本人删除! 入口: import org.springfra ...

  5. linux文本编辑器vim详解

    vim 1.打开文件 vim [option] - file... 打开文件 +# 打开文件后,让光标处于第#行的行首 +/字符串 打开文件后,光标处于第一个被匹配到字符串的行首 -b file 二进 ...

  6. MyBatis Plus 2.3 个人笔记-01-代码生成器

    sb_mybatis_puls2.3 <?xml version="1.0" encoding="UTF-8"?> <project xmln ...

  7. 5. Git初始化及仓库创建和操作

    4. Git初始化及仓库创建和操作 基本信息设置 1. 设置用户名 git config --global user.name 'itcastphpgit1' 2. 设置用户名邮箱 git confi ...

  8. Android 接入腾讯IM即时通信(详细图文)

    原文地址:Android 接入腾讯IM即时通信(详细图文) | Stars-One的杂货小窝 腾讯云IM官网文档上提供了带UI模块和不带UI模块的,本文是基于带UI模块进行了Module封装,可以方便 ...

  9. Python入门-异常处理

    异常处理 #try----else---- 会一起执行 #finally无论如何,最后都会执行 def main(): try: res = 10/2 print("开始执行计算:" ...

  10. IDEA-2020版本 Gradle项目控制台输出乱码

    点击Help->Edit custom vm options 加入下面这一行 -Dfile.encoding=utf-8 最后当然要重启idea了