Perceptron, Support Vector Machine and Dual Optimization Problem (3)
Support Vector Machines
Perceptron and Linear Separability
假设存在一个 linear decision boundary,它可以完美地对 training dataset 进行分割。 那么,经由上述 Perceptron Algorithm 计算,它将返回哪一条 linear separator?

当 linear separator(即一个给定的超平面)的 margin \(\gamma\) 越大,则该模型的归纳与概括的性能越强。从几何的角度(二维)的角度来理解非常直观,我们需要这么一条 linear separator,即,它既能对 training dataset 进行完美的分割,同时,我们希望距它最近的数据点距它的距离最大化(如上图中间的那根直线)。否则,如果存在一个数据点距该 linear separator 的距离不是那么远,从直觉来说,围绕在该数据点附近且与它 label 相同的一个新数据点随意体现出的一个随机波动,将使得这个新数据点越过 linear separator,导致分类错误。
因此,现在的问题是,如何将 margin 纳入考量以求得这条最佳的 linear boundary?支持向量机将很好地解决这个问题。
Motivation(Why SVM?)
以下是 SVM 体现出的眼见的优势:
SVM 返回一个 linear classifier,并且由于其算法使 margin solution 最大化,故这个 linear classifier 是一个稳定的解。
对 SVM 稍加改变,则能提供一种解决当数据集 non-separable 情况的方法。
SVM 同样给出了进行非线性分类的隐性方法(implicit method,即上述的 kernel transformation)。
SVM Formula
假设存在一些 margin \(\gamma \in \Gamma\) 使得 training dataset \(\mathcal{S} = \mathcal{X} \times \mathcal{Y}\) 线性可分(但注意 linear separator 不一定穿过空间的原点)。
那么,decision boundary:
\]
Linear classifier:
f(\vec{x}) & = \text{sign}\big( g(\vec{x}) \big) \\
& = \text{sign} \big( \vec{w} \cdot \vec{x} - b \big)
\end{align*}
\]
思路
我们先分别求两个平行的超平面,使得它们对所有的 training data point 进行正确的分类,再使这两个超平面之间的距离最大化。
这也是所谓 “支持向量机(Support Vector Machine)” 名称的由来,我们最终选定的支持向量 \(\vec{w}\) 就像千斤顶一样将上述两个平行的超平面 “支撑” 开来,并且支撑开的距离也将是尽可能的最大,如下图所示。

Derivation
如上图,两个超平面的 decision boundary 可以写作:
\vec{w} \cdot \vec{x} - b = 1 \\
\vec{w} \cdot \vec{x} - b = -1
\end{cases}
\]
则两个超平面之间的距离为:
\]
对于初学者的直观理解,推导可以通过二维平面上点到直线的距离进行类比,已知点 \((x_{0}, y_{0})\) 到直线 \(Ax + By + C = 0\) 的计算公式为:
\[\frac{|Ax_{0} + By_{0} + C|}{\sqrt{A^{2} + B^{2}}}
\]因此,设 \(\vec{w} \cdot \vec{x} - b = 1\) 上任意一点的坐标为 \(\vec{x_{0}}\),故满足:
\[\vec{w} \cdot \vec{x_{0}} - b - 1 = 0
\]那么两平行超平面之间的距离为该点到另一超平面 \(\vec{w} \cdot \vec{x} - b = -1\) 的距离,即:
\[\begin{align*}
\frac{|\vec{w} \cdot \vec{x_{0}} - b + 1|}{\sqrt{||\vec{w}||^{2}}} & = \frac{|\big( \vec{w} \cdot \vec{x_{0}} - b - 1 \big) + 2|}{\sqrt{||\vec{w}||^{2}}} \\
& = \frac{2}{||\vec{w}||}
\end{align*}
\]
因此,对于 \(\forall i \in \mathbb{N}^{+}\),当:
\vec{w} \cdot \vec{x_{i}} - b \geq 1 \qquad \qquad \text{if } y_{i} = 1 \\
\vec{w} \cdot \vec{x_{i}} - b \leq -1 \qquad \quad \ \text{if } y_{i} = -1
\end{cases}
\]
则 training data 全部被正确地分类。
理解
参考上图,此处 \(\vec{w} \cdot \vec{x_{i}} - b \geq 1\) 和 \(\vec{w} \cdot \vec{x_{i}} - b \leq -1\) 的几何意义是,将对于 label 为 \(1\) 和 \(-1\) 的 data point 分别排除在超平面 \(\vec{w} \cdot \vec{x} - b = 1\) 和 \(\vec{w} \cdot \vec{x} - b = -1\) 的两边外侧,从而留下两个超平面之间的空档。
我们合并上面两式为一个式子,则 training data 全部被正确地分类等价于:
\]
现在我们得到了两个超平面的距离表达式 \(\frac{2}{||\vec{w}||}\),同时需要满足 constraints \(y_{i} \big( \vec{w} \cdot \vec{x_{i}} - b \big) \geq 1\) for \(\forall i \in \mathbb{N}^{+}\),我们希望在约束条件下使 \(\frac{2}{||\vec{w}||}\) 最大,那么 SVM 转变为运筹问题的求解,i.e.,
\text{maximize: } \quad & \frac{2}{||\vec{w}||} \\
\text{subject to: } \quad & y_{i} \big( \vec{w} \cdot \vec{x_{i}} - b \big) \geq 1, \quad \forall i \in \mathbb{N}^{+}
\end{align*}
\]
SVM Standard (Primal) Form
注意到,\(||\vec{w}|| \geq 0\) 恒成立,且若 \(||\vec{w}|| = 0\) 时,支持向量(即权重向量)\(\vec{w}\) 为零向量,使得 linear separator 无意义。故最大化 \(\frac{2}{||\vec{w}||}\) 等价于 最小化 \(\frac{1}{2} ||\vec{w}||\)。类似于线性回归中使用 Mean Square Error 而非 Mean Absolute Error 作为 loss function 的原因,\(||\vec{w}||\) 在原点处不可微,因此我们选择 minimize \(\frac{1}{2} ||\vec{w}||^{2}\),而非原形式 \(\frac{1}{2}||\vec{w}||\),这当然是等价的。
故 SVM Standard (Primal) Form 如下:
\text{minimize: } \quad & \frac{1}{2} ||\vec{w}||^{2} \\
\text{subject to: } \quad & y_{i} \big( \vec{w} \cdot \vec{x_{i}} - b \big) \geq 1, \quad \forall i \in \mathbb{N}^{+}
\end{align*}
\]
SVM When Training Dataset is Non-separable
当 training dataset 无法被全部正确地分类时(即,不存在一个 margin \(\gamma \in \Gamma\) 使得 training dataset \(\mathcal{S} = \mathcal{X} \times \mathcal{Y}\) 线性可分),可以引入 slack variables 求解问题。
SVM Standard (Primal) Form with Slack
SVM Standard (Primal) Form with Slack 如下所示:
& \text{minimize: } \quad \frac{1}{2} ||\vec{w}||^{2} + C \sum\limits_{i=1}^{n} \xi_{i} \\
& \text{subject to: } \quad \begin{cases}
y_{i} \big( \vec{w} \cdot \vec{x_{i}} - b \big) \geq 1 - \xi_{i}, \quad \forall i \in \mathbb{N}^{+} \\
\xi_{i} \geq 0, \qquad \qquad \qquad \qquad \forall i \in \mathbb{N}^{+} \\
\end{cases}
\end{align*}
\]
问题:如何求解最优的 \(\vec{w}, ~ b, ~ \vec{\xi}\) ?
由于涉及边界问题,我们不能在目标函数中直接对 \(\vec{w}, ~ b, ~ \vec{\xi}\) 求偏导。我们有以下两种解决办法:
Projection Methods
从一个满足 constraints 的解 \(\vec{x_{0}}\) 开始,求能使得 objective function 略微减小的 \(\vec{x_{1}}\)。如果所求到的 \(\vec{x_{1}}\) 违反了 constraints,那么 project back to the constraints 进行迭代。这种方法偏向于利用算法求解,从原理上类似于梯度下降算法以及前文介绍的 Perceptron Algorithm。
Penalty Methods
使用惩罚函数将 constraints 并入 objective function,对于违反 constraints 的解 \(\vec{x}\) 予以惩罚。
The Lagrange (Penalty) Method:拉格朗日(惩罚)方法
考虑增广函数:
\]
其中,\(L(\vec{x}, \vec{\lambda})\) 为拉格朗日函数,\(\lambda_{i}\) 为拉格朗日变量(或对偶变量,dual variables)。
对于此类函数,我们所需要的目标的 canonical form 为:
\text{minimize: } \quad & f(\vec{x}) \\
\text{subject to: } \quad & g_{i}(\vec{x}), \quad \forall i \in \mathbb{N}^{+}
\end{align*}
\]
由于 \(g_{i}(\vec{x}) \leq 0\) for \(\forall i \in \mathbb{N}^{+}\),则对于任意的 feasible \(\vec{x}\) 以及任意的 \(\vec{\lambda_{i}} \geq 0\),都有:
\]
因此:
\]
注意到上式中的 \(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\),这代表我们在 \(\vec{\lambda}\) 所在的空间 \([0, ~ \infty)^{n}\) 中搜索使拉格朗日函数最大的 \(\vec{\lambda}\),即搜索各个对应的 \(\lambda_{i} \in [0, ~ \infty)\)。
尤其注意上式 是针对 feasible \(\vec{x}\) 成立。因为 \(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\) 会导致:
当 \(\vec{x}\) infeasible 时,意味着 \(\vec{x}\) 不满足所有约束条件 \(g_{i}(\vec{x}) \leq 0\) for \(\forall i \in \mathbb{N}^{+}\),这意味着:
\[\exists i: ~ g_{i}(\vec{x}) > 0
\]那么:
\[\begin{align*}
\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) & = \max\limits_{\lambda_{i} \geq 0} \Big( f(\vec{x}) + \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \Big) \\
& = f(\vec{x}) + \max\limits_{\lambda_{i} \geq 0} \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \\
& = \infty
\end{align*}
\]这是因为: 只要对应的 \(\lambda_{i} \rightarrow \infty\),则 \(\lambda_{i} g_{i}(\vec{x}) \rightarrow \infty\)(因为 \(g_{i}(\vec{x}) > 0\)),从而 \(\sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \rightarrow \infty\),故 \(L(\vec{x}, \vec{\lambda}) = f(\vec{x}) + \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \rightarrow \infty\)。
所以此时不满足 \(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) \leq f(\vec{x})\)。
当 \(\vec{x}\) feasible 时,即对于 \(\forall i \in \mathbb{N}^{+}\),约束条件 \(g_{i}(\vec{x}) \leq 0\) 都成立,那么:
\[\forall i \in \mathbb{N}^{+}: ~ g_{i}(\vec{x}) \quad \implies \quad\sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \leq 0
\]因此 \(\max\limits_{\lambda_{i} \geq 0} \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) = 0\),即令所有 \(\lambda_{i}\) 都为 \(0\),故:
\[\begin{align*}
\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) & = \max\limits_{\lambda_{i} \geq 0} \Big( f(\vec{x}) + \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \Big) \\
& = f(\vec{x}) + \max\limits_{\lambda_{i} \geq 0} \Big( \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \Big) \\
& = f(\vec{x})
\end{align*}
\]
根据上述结论,给定任意 feasible \(\vec{x}\) 以及任意 \(\lambda_{i} \geq 0\),有:
\]
且:
f(\vec{x}) \qquad \text{if } \vec{x} \text{ feasible} \\
\infty \qquad \quad \text{if } \vec{x} \text{ infeasible}
\end{cases}
\]
因此,原先的 constrained optimization problem 的 optimal solution 为:
\]
如何理解 \(\min\limits_{\vec{x}} \max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\)?
\(L(\vec{x}, \vec{\lambda})\) 是向量 \(\vec{x}\) 和 \(\vec{\lambda}\) 的函数,从向量角度可以抽象为一个二元函数。因此,计算逻辑是,对于每一个给定的 \(\vec{x_{0}}\),可以得到仅关于 \(\vec{\lambda}\) 的函数 \(L(\vec{x_{0}}, \vec{\lambda})\),然后求出使对应的 \(L(\vec{x_{0}}, \vec{\lambda})\) 最大的各 \(\vec{\lambda_{(\vec{x_{0}})}}^{*}\)(i.e.,各 \(\lambda_{i}^{*}\))。因此内层 \(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\) 返回一个对于任意给定的 \(\vec{x_{0}}\),使得 \(L(\vec{x_{0}}, \vec{\lambda})\) 最大的 \(\vec{\lambda}\) 的集合。那么,\(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\) 是一个仅关于 \(\vec{x}\) 的函数,再在外层求使得这个函数最小的 \(\vec{x}^{*}\),即 \(\min\limits_{\vec{x}} \Big( \max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) \Big)\),其结果可以写为:
\[\min\limits_{\vec{x}} \max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) = L(\vec{x}^{*}, \vec{\lambda_{(\vec{x}^{*})}}^{*})
\]
解释(为什么它是 optimal solution?):
因为,对于任意的 \(\vec{x}\)(无论是否 feasible),\(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\) 计算出的结果可能为 \(f(\vec{x})\)(当 \(\vec{x}\) 为 feasible),也可能为 \(\infty\)(当 \(\vec{x}\) 为 infeasible)。但没关系,在最外层的 \(\min\limits_{\vec{x}}\) 可以对 \(\vec{x}\) 进行筛选,使最终选出的 \(\vec{x}^{*}\) 不可能为 infeasible,否则相当于 \(\min\limits_{\vec{x}}\) 计算出的结果为 \(\infty\),这是只要存在 feasible region 就不可能发生的事情。
Perceptron, Support Vector Machine and Dual Optimization Problem (3)的更多相关文章
- 机器学习技法总结(一):支持向量机(linear support vector machine,dual support vector machine)
第一阶段技法: large margin (the relationship between large marin and regularization), hard-SVM,soft-SVM,du ...
- Support Vector Machine (2) : Sequential Minimal Optimization
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
- Support Vector Machine (1) : 简单SVM原理
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
- A glimpse of Support Vector Machine
支持向量机(support vector machine, 以下简称svm)是机器学习里的重要方法,特别适用于中小型样本.非线性.高维的分类和回归问题.本篇希望在正篇提供一个svm的简明阐述,附录则提 ...
- 机器学习之支持向量机(Support Vector Machine)
转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是 ...
- 支持向量机(Support Vector Machine,SVM)—— 线性SVM
支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...
- Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界
在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时 ...
- Support Vector Machine (3) : 再谈泛化误差(Generalization Error)
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
- 机器学习技法:01 Linear Support Vector Machine
Roadmap Course Introduction Large-Margin Separating Hyperplane Standard Large-Margin Problem Support ...
- 机器学习技法笔记:01 Linear Support Vector Machine
Roadmap Course Introduction Large-Margin Separating Hyperplane Standard Large-Margin Problem Support ...
随机推荐
- linux Usb serial console
ubuntu Usb serial console 能够把下电时打印输出到串口上,可以记录,而netconsole只能输出下电到disk 之前的打印 Usb串口线,ftdi或pl2303都可以 如果是 ...
- go的相关包time、os、rand、fmt
time 1.time包 2.time.Time类型, 用来表示时间 3.取当前时间, now := time.Now() 4.time.Now().Day(),time.Now().Minute() ...
- defer、panic、recover
defer(延迟执行语句) 多个延迟执行语句的处理顺序 package main import ( "fmt" ) func main() { fmt.Println(" ...
- Debug --> wireshark中的lua插件使用
一.使用Lua脚本对pcap文件按流进行存储 https://zhuanlan.zhihu.com/p/35188803 二.使用tshark对pcap报文进行批量切流 https://blog.cs ...
- node邮件发送html,简单2步附代码
node 发送 html 邮件 安装 npm install nodemailer 新建 html 文件 ① 新建 views 目录下面新增 index.html(当然也可以使用其它目录结构,下面的代 ...
- 工作随笔1-从slave备份,恢复成新得从库
innobackupex --slave-info --safe-slave-backup --no-timestamp tmp_lastinnobackupex --apply-log tmp_la ...
- home:76 Uncaught TypeError: AMap.MouseTool is not a constructor
利用高德地图API标记已知点并测量已知点之间的距离,在调用高德地图的类方法的时候会遇到这样的问题 home:76 Uncaught TypeError: AMap.MouseTool is not a ...
- AJAX请求的基本操作
1 const { request, response } = require('express'); 2 //引入express 3 const express = require('express ...
- 掷骰子【普通线性DP】【转移方程可以优化为矩阵快速幂】
掷骰子 思路 可以先定义一个状态f[i] [j]: 前i个骰子,最后一个面是j的方法数, 肯定超时,然鹅可以混一些分,代码如下 for(int i=1;i<=6;i++) f[0][i]=1; ...
- python学习记录(六)-系统内置模块
序列化 什么是序列化?序列化是指把python中的数据以文本或二进制形式进行转换,还能反序列化为原来的数据 为什么需要序列化?便于数据在程序与网络之间的传输和存储 json:文本序列化 pickle: ...