Perceptron, Support Vector Machine and Dual Optimization Problem (3)
Support Vector Machines
Perceptron and Linear Separability
假设存在一个 linear decision boundary,它可以完美地对 training dataset 进行分割。 那么,经由上述 Perceptron Algorithm 计算,它将返回哪一条 linear separator?

当 linear separator(即一个给定的超平面)的 margin \(\gamma\) 越大,则该模型的归纳与概括的性能越强。从几何的角度(二维)的角度来理解非常直观,我们需要这么一条 linear separator,即,它既能对 training dataset 进行完美的分割,同时,我们希望距它最近的数据点距它的距离最大化(如上图中间的那根直线)。否则,如果存在一个数据点距该 linear separator 的距离不是那么远,从直觉来说,围绕在该数据点附近且与它 label 相同的一个新数据点随意体现出的一个随机波动,将使得这个新数据点越过 linear separator,导致分类错误。
因此,现在的问题是,如何将 margin 纳入考量以求得这条最佳的 linear boundary?支持向量机将很好地解决这个问题。
Motivation(Why SVM?)
以下是 SVM 体现出的眼见的优势:
SVM 返回一个 linear classifier,并且由于其算法使 margin solution 最大化,故这个 linear classifier 是一个稳定的解。
对 SVM 稍加改变,则能提供一种解决当数据集 non-separable 情况的方法。
SVM 同样给出了进行非线性分类的隐性方法(implicit method,即上述的 kernel transformation)。
SVM Formula
假设存在一些 margin \(\gamma \in \Gamma\) 使得 training dataset \(\mathcal{S} = \mathcal{X} \times \mathcal{Y}\) 线性可分(但注意 linear separator 不一定穿过空间的原点)。
那么,decision boundary:
\]
Linear classifier:
f(\vec{x}) & = \text{sign}\big( g(\vec{x}) \big) \\
& = \text{sign} \big( \vec{w} \cdot \vec{x} - b \big)
\end{align*}
\]
思路
我们先分别求两个平行的超平面,使得它们对所有的 training data point 进行正确的分类,再使这两个超平面之间的距离最大化。
这也是所谓 “支持向量机(Support Vector Machine)” 名称的由来,我们最终选定的支持向量 \(\vec{w}\) 就像千斤顶一样将上述两个平行的超平面 “支撑” 开来,并且支撑开的距离也将是尽可能的最大,如下图所示。

Derivation
如上图,两个超平面的 decision boundary 可以写作:
\vec{w} \cdot \vec{x} - b = 1 \\
\vec{w} \cdot \vec{x} - b = -1
\end{cases}
\]
则两个超平面之间的距离为:
\]
对于初学者的直观理解,推导可以通过二维平面上点到直线的距离进行类比,已知点 \((x_{0}, y_{0})\) 到直线 \(Ax + By + C = 0\) 的计算公式为:
\[\frac{|Ax_{0} + By_{0} + C|}{\sqrt{A^{2} + B^{2}}}
\]因此,设 \(\vec{w} \cdot \vec{x} - b = 1\) 上任意一点的坐标为 \(\vec{x_{0}}\),故满足:
\[\vec{w} \cdot \vec{x_{0}} - b - 1 = 0
\]那么两平行超平面之间的距离为该点到另一超平面 \(\vec{w} \cdot \vec{x} - b = -1\) 的距离,即:
\[\begin{align*}
\frac{|\vec{w} \cdot \vec{x_{0}} - b + 1|}{\sqrt{||\vec{w}||^{2}}} & = \frac{|\big( \vec{w} \cdot \vec{x_{0}} - b - 1 \big) + 2|}{\sqrt{||\vec{w}||^{2}}} \\
& = \frac{2}{||\vec{w}||}
\end{align*}
\]
因此,对于 \(\forall i \in \mathbb{N}^{+}\),当:
\vec{w} \cdot \vec{x_{i}} - b \geq 1 \qquad \qquad \text{if } y_{i} = 1 \\
\vec{w} \cdot \vec{x_{i}} - b \leq -1 \qquad \quad \ \text{if } y_{i} = -1
\end{cases}
\]
则 training data 全部被正确地分类。
理解
参考上图,此处 \(\vec{w} \cdot \vec{x_{i}} - b \geq 1\) 和 \(\vec{w} \cdot \vec{x_{i}} - b \leq -1\) 的几何意义是,将对于 label 为 \(1\) 和 \(-1\) 的 data point 分别排除在超平面 \(\vec{w} \cdot \vec{x} - b = 1\) 和 \(\vec{w} \cdot \vec{x} - b = -1\) 的两边外侧,从而留下两个超平面之间的空档。
我们合并上面两式为一个式子,则 training data 全部被正确地分类等价于:
\]
现在我们得到了两个超平面的距离表达式 \(\frac{2}{||\vec{w}||}\),同时需要满足 constraints \(y_{i} \big( \vec{w} \cdot \vec{x_{i}} - b \big) \geq 1\) for \(\forall i \in \mathbb{N}^{+}\),我们希望在约束条件下使 \(\frac{2}{||\vec{w}||}\) 最大,那么 SVM 转变为运筹问题的求解,i.e.,
\text{maximize: } \quad & \frac{2}{||\vec{w}||} \\
\text{subject to: } \quad & y_{i} \big( \vec{w} \cdot \vec{x_{i}} - b \big) \geq 1, \quad \forall i \in \mathbb{N}^{+}
\end{align*}
\]
SVM Standard (Primal) Form
注意到,\(||\vec{w}|| \geq 0\) 恒成立,且若 \(||\vec{w}|| = 0\) 时,支持向量(即权重向量)\(\vec{w}\) 为零向量,使得 linear separator 无意义。故最大化 \(\frac{2}{||\vec{w}||}\) 等价于 最小化 \(\frac{1}{2} ||\vec{w}||\)。类似于线性回归中使用 Mean Square Error 而非 Mean Absolute Error 作为 loss function 的原因,\(||\vec{w}||\) 在原点处不可微,因此我们选择 minimize \(\frac{1}{2} ||\vec{w}||^{2}\),而非原形式 \(\frac{1}{2}||\vec{w}||\),这当然是等价的。
故 SVM Standard (Primal) Form 如下:
\text{minimize: } \quad & \frac{1}{2} ||\vec{w}||^{2} \\
\text{subject to: } \quad & y_{i} \big( \vec{w} \cdot \vec{x_{i}} - b \big) \geq 1, \quad \forall i \in \mathbb{N}^{+}
\end{align*}
\]
SVM When Training Dataset is Non-separable
当 training dataset 无法被全部正确地分类时(即,不存在一个 margin \(\gamma \in \Gamma\) 使得 training dataset \(\mathcal{S} = \mathcal{X} \times \mathcal{Y}\) 线性可分),可以引入 slack variables 求解问题。
SVM Standard (Primal) Form with Slack
SVM Standard (Primal) Form with Slack 如下所示:
& \text{minimize: } \quad \frac{1}{2} ||\vec{w}||^{2} + C \sum\limits_{i=1}^{n} \xi_{i} \\
& \text{subject to: } \quad \begin{cases}
y_{i} \big( \vec{w} \cdot \vec{x_{i}} - b \big) \geq 1 - \xi_{i}, \quad \forall i \in \mathbb{N}^{+} \\
\xi_{i} \geq 0, \qquad \qquad \qquad \qquad \forall i \in \mathbb{N}^{+} \\
\end{cases}
\end{align*}
\]
问题:如何求解最优的 \(\vec{w}, ~ b, ~ \vec{\xi}\) ?
由于涉及边界问题,我们不能在目标函数中直接对 \(\vec{w}, ~ b, ~ \vec{\xi}\) 求偏导。我们有以下两种解决办法:
Projection Methods
从一个满足 constraints 的解 \(\vec{x_{0}}\) 开始,求能使得 objective function 略微减小的 \(\vec{x_{1}}\)。如果所求到的 \(\vec{x_{1}}\) 违反了 constraints,那么 project back to the constraints 进行迭代。这种方法偏向于利用算法求解,从原理上类似于梯度下降算法以及前文介绍的 Perceptron Algorithm。
Penalty Methods
使用惩罚函数将 constraints 并入 objective function,对于违反 constraints 的解 \(\vec{x}\) 予以惩罚。
The Lagrange (Penalty) Method:拉格朗日(惩罚)方法
考虑增广函数:
\]
其中,\(L(\vec{x}, \vec{\lambda})\) 为拉格朗日函数,\(\lambda_{i}\) 为拉格朗日变量(或对偶变量,dual variables)。
对于此类函数,我们所需要的目标的 canonical form 为:
\text{minimize: } \quad & f(\vec{x}) \\
\text{subject to: } \quad & g_{i}(\vec{x}), \quad \forall i \in \mathbb{N}^{+}
\end{align*}
\]
由于 \(g_{i}(\vec{x}) \leq 0\) for \(\forall i \in \mathbb{N}^{+}\),则对于任意的 feasible \(\vec{x}\) 以及任意的 \(\vec{\lambda_{i}} \geq 0\),都有:
\]
因此:
\]
注意到上式中的 \(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\),这代表我们在 \(\vec{\lambda}\) 所在的空间 \([0, ~ \infty)^{n}\) 中搜索使拉格朗日函数最大的 \(\vec{\lambda}\),即搜索各个对应的 \(\lambda_{i} \in [0, ~ \infty)\)。
尤其注意上式 是针对 feasible \(\vec{x}\) 成立。因为 \(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\) 会导致:
当 \(\vec{x}\) infeasible 时,意味着 \(\vec{x}\) 不满足所有约束条件 \(g_{i}(\vec{x}) \leq 0\) for \(\forall i \in \mathbb{N}^{+}\),这意味着:
\[\exists i: ~ g_{i}(\vec{x}) > 0
\]那么:
\[\begin{align*}
\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) & = \max\limits_{\lambda_{i} \geq 0} \Big( f(\vec{x}) + \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \Big) \\
& = f(\vec{x}) + \max\limits_{\lambda_{i} \geq 0} \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \\
& = \infty
\end{align*}
\]这是因为: 只要对应的 \(\lambda_{i} \rightarrow \infty\),则 \(\lambda_{i} g_{i}(\vec{x}) \rightarrow \infty\)(因为 \(g_{i}(\vec{x}) > 0\)),从而 \(\sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \rightarrow \infty\),故 \(L(\vec{x}, \vec{\lambda}) = f(\vec{x}) + \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \rightarrow \infty\)。
所以此时不满足 \(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) \leq f(\vec{x})\)。
当 \(\vec{x}\) feasible 时,即对于 \(\forall i \in \mathbb{N}^{+}\),约束条件 \(g_{i}(\vec{x}) \leq 0\) 都成立,那么:
\[\forall i \in \mathbb{N}^{+}: ~ g_{i}(\vec{x}) \quad \implies \quad\sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \leq 0
\]因此 \(\max\limits_{\lambda_{i} \geq 0} \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) = 0\),即令所有 \(\lambda_{i}\) 都为 \(0\),故:
\[\begin{align*}
\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) & = \max\limits_{\lambda_{i} \geq 0} \Big( f(\vec{x}) + \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \Big) \\
& = f(\vec{x}) + \max\limits_{\lambda_{i} \geq 0} \Big( \sum\limits_{i=1}^{n} \lambda_{i} g_{i}(\vec{x}) \Big) \\
& = f(\vec{x})
\end{align*}
\]
根据上述结论,给定任意 feasible \(\vec{x}\) 以及任意 \(\lambda_{i} \geq 0\),有:
\]
且:
f(\vec{x}) \qquad \text{if } \vec{x} \text{ feasible} \\
\infty \qquad \quad \text{if } \vec{x} \text{ infeasible}
\end{cases}
\]
因此,原先的 constrained optimization problem 的 optimal solution 为:
\]
如何理解 \(\min\limits_{\vec{x}} \max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\)?
\(L(\vec{x}, \vec{\lambda})\) 是向量 \(\vec{x}\) 和 \(\vec{\lambda}\) 的函数,从向量角度可以抽象为一个二元函数。因此,计算逻辑是,对于每一个给定的 \(\vec{x_{0}}\),可以得到仅关于 \(\vec{\lambda}\) 的函数 \(L(\vec{x_{0}}, \vec{\lambda})\),然后求出使对应的 \(L(\vec{x_{0}}, \vec{\lambda})\) 最大的各 \(\vec{\lambda_{(\vec{x_{0}})}}^{*}\)(i.e.,各 \(\lambda_{i}^{*}\))。因此内层 \(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\) 返回一个对于任意给定的 \(\vec{x_{0}}\),使得 \(L(\vec{x_{0}}, \vec{\lambda})\) 最大的 \(\vec{\lambda}\) 的集合。那么,\(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\) 是一个仅关于 \(\vec{x}\) 的函数,再在外层求使得这个函数最小的 \(\vec{x}^{*}\),即 \(\min\limits_{\vec{x}} \Big( \max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) \Big)\),其结果可以写为:
\[\min\limits_{\vec{x}} \max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda}) = L(\vec{x}^{*}, \vec{\lambda_{(\vec{x}^{*})}}^{*})
\]
解释(为什么它是 optimal solution?):
因为,对于任意的 \(\vec{x}\)(无论是否 feasible),\(\max\limits_{\lambda_{i} \geq 0} L(\vec{x}, \vec{\lambda})\) 计算出的结果可能为 \(f(\vec{x})\)(当 \(\vec{x}\) 为 feasible),也可能为 \(\infty\)(当 \(\vec{x}\) 为 infeasible)。但没关系,在最外层的 \(\min\limits_{\vec{x}}\) 可以对 \(\vec{x}\) 进行筛选,使最终选出的 \(\vec{x}^{*}\) 不可能为 infeasible,否则相当于 \(\min\limits_{\vec{x}}\) 计算出的结果为 \(\infty\),这是只要存在 feasible region 就不可能发生的事情。
Perceptron, Support Vector Machine and Dual Optimization Problem (3)的更多相关文章
- 机器学习技法总结(一):支持向量机(linear support vector machine,dual support vector machine)
第一阶段技法: large margin (the relationship between large marin and regularization), hard-SVM,soft-SVM,du ...
- Support Vector Machine (2) : Sequential Minimal Optimization
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
- Support Vector Machine (1) : 简单SVM原理
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
- A glimpse of Support Vector Machine
支持向量机(support vector machine, 以下简称svm)是机器学习里的重要方法,特别适用于中小型样本.非线性.高维的分类和回归问题.本篇希望在正篇提供一个svm的简明阐述,附录则提 ...
- 机器学习之支持向量机(Support Vector Machine)
转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是 ...
- 支持向量机(Support Vector Machine,SVM)—— 线性SVM
支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...
- Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界
在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时 ...
- Support Vector Machine (3) : 再谈泛化误差(Generalization Error)
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
- 机器学习技法:01 Linear Support Vector Machine
Roadmap Course Introduction Large-Margin Separating Hyperplane Standard Large-Margin Problem Support ...
- 机器学习技法笔记:01 Linear Support Vector Machine
Roadmap Course Introduction Large-Margin Separating Hyperplane Standard Large-Margin Problem Support ...
随机推荐
- vue实现自定义字体库
先看效果是不是你所需要的,再看具体如何实现. 效果如下图所示: 有些字体需要下载,用图片就会变得很不清楚,这样我们就需要去下载字体库,操作步骤如下: 首先找到需要下载的字体库 然后放在项目里面 然后定 ...
- 方法(Java)
什么是方法? 基本介绍 在其他语言中也叫函数 System.out.println();类名.对象.方法: Java方法是语句的集合,它们在一起执行一个功能 方法是解决一类问题的步骤的有序集合 方法包 ...
- Python 错误:TypeError: range() takes no keyword arguments
问题描述: for循环时使用range()出错: for page in range(start=1, stop=8 + 1,step=1): print(page) 结果报错TypeError: r ...
- SQL Server 错误:特殊符号“•”导致的sql查询问题
问题描述: 对于一些标题或字符串,例如: 如果导入数据库,就会发现会自动变成?号了: 在进行SQL查询的时候,会出现一个同一条sql语句在mysql直接执行sql可以查询到,但是mssql进行查询的时 ...
- 记录搜索的例子 浙大c
#include <stdio.h> struct{ int amount; char *name; } coins[] = { {1, "penny"}, {5, & ...
- jsp第九周作业
1.做一个图书类Book id,name,price ,get,set访问器,构造方法2个,1个无参,1个有参做一个测试类,在main中创建3个图书对象,放到list集合中.做一个菜单,可以添加,删除 ...
- centos6放行防火墙8080端口操作
1. 进入防火墙文件: [ vi /etc/sysconfig/iptables ] 2. 放行8080端口: [ -A RH-Firewall-1-INPUT -m state --state NE ...
- maya灯光导入houdini插件开发
加入工作室时师兄给了两道测试题,由于第一道是完善师兄的一个houdini项目管理插件,我只是开发了一些小功能,所以不好意思拿出来. 第二道题就完全是由自己开发的一个小插件,功能是把maya里的灯光导入 ...
- [Leetcode 235/236]LCA二叉树最近公共祖先Lowest Common Ancestor of a Binary Tree
题目 给定二叉树和两个点,求两点的LCA最近公共祖先 Given a binary tree, find the lowest common ancestor (LCA) of two given n ...
- C# DevExpress gridview 字符串尾部带数字如何排序
我们经常遇到这样的问题,字符串尾部带数字,如何正确排序; 首先设置GridView ,Columns 的相关列,设置属性中,SortMode为Custom 解决思路,把字符串尾缀数字,分离出来.先比较 ...