CF1738EBalance Addicts

原题: CF1738EBalance Addicts

题目大意

有\(n\)个数的数列,把它分成若干个子集,保证所有子集的和能够组成一个回文数列,求\(mod\ 998244353\)后的方案数。

做法

思路

先分别从头和尾找到一段序列的和相同,记为\(l1\ r2\)然后从\(l1\ r2\)开始寻找一段最长的和相等的序列记为\(r1\ l2\)。

此时答案为

\[ans *= \sum_{i = 0}^{min(r1 - l1 + 1 , r2 - l2 + 1)}C_{r1 - l1 + 1}^i * C_{r2 - l2 + 1}^i
\]

注意

1、如果此时\(l1\ r2\)之间的数都为\(0\)。

显然:\(l1\ r2\)之间的数都可以随便选,那么将\(ans *= 2^{r2 - l1 + 1}\)即可退出

2、预处理\(sum1\ sum2\ tpow\)表示前缀和、后缀和、2的\(n\)次方

3、记得\(mod\ 998244353\)

code

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
const long long mod = 998244353;
int n;
long long ans , ans1 , sum1[N + 5] , sum2[N + 5] , fac[N + 5] , inv[N + 5] , tpow[N + 5] , a[N + 5];
long long pw(long long x , long long y) {
if(!y)
return 1;
long long z = pw (x , y / 2);
z = z * z % mod;
if(y & 1)
z = z * x % mod;
return z;
}
void pre() {
fac[1] = fac[0] = 1;
for(int i = 2 ; i <= N ; i++) {
fac[i] = fac[i - 1] * i % mod ;
}
inv[N] = pw (fac[N] , mod - 2);
for(int i = N - 1 ; i >= 0 ; i--) {
inv[i] = inv[i + 1] * (i + 1) % mod;
}
tpow[0] = 1;
for (int i = 1 ; i <= N ; i++)
tpow[i] = tpow[i - 1] * 2 % mod;
}
long long C(int x , int y) {
if(x<0||y<0) return 0;
if(x < y)
return 0;
return fac[x] * inv[y] % mod * inv[x - y] % mod;
}
int main () {
pre ();
int T;
scanf ("%d" , &T);
while (T--) {
ans = 1;
scanf ("%d" , &n);
for (int i = 1 ; i <= n ; i++) {
scanf ("%d" , &a[i]);
}
for (int i = 1 ; i <= n ; i++) {
sum1[i] = sum1[i - 1] + a[i];
}
for (int i = n - 1; i >= 1 ; i--) {
sum2[i] = sum2[i + 1] + a[i + 1];
}
for (int l1 = 1 , r2 = n - 1 , l2 , r1; l1 <= r2 ; l1 = r1 + 1 , r2 = l2 - 1) {
while (l1 <= r2 && sum1[l1] != sum2[r2]) {
if(sum1[l1] < sum2[r2])
l1 ++;
else
r2 --;
}
if (l1 > r2)
break;
if (sum1[l1] == sum1[r2]) {
ans = tpow[r2 - l1 + 1] * ans % mod;
break;
}
r1 = l1 , l2 = r2;
while (sum1[r1 + 1] == sum1[l1])
r1 ++;
while (sum2[l2 - 1] == sum2[r2])
l2 --;
ans1 = 0;
for (int i = 0 ; i <= min(r1 - l1 + 1 , r2 - l2 + 1) ; i++) {
ans1 = (ans1 + (C (r1 - l1 + 1 , i) * C (r2 - l2 + 1 , i) %mod) ) %mod;
}
ans = ans * ans1 % mod;
}
printf("%lld\n" , ans);
for (int i = 1 ; i <= n ; i++)
sum1[i] = sum2[i] = 0;
}
return 0;
}

CF1738EBalance Addicts的更多相关文章

  1. java运算符优先级记忆口诀

    尊重原创:(口诀)转自http://lasombra.iteye.com/blog/991662 今天看到<java编程思想>中的运算符优先级助记口诀,不过"Ulcer Addi ...

  2. zoj 1010 (线段相交判断+多边形求面积)

    链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=10 Area Time Limit: 2 Seconds      Mem ...

  3. How good software makes us stupid?

    How good software makes us stupid? 科技是怎样让人变傻的? People assume that iPhones, laptops and Netflix are e ...

  4. zoj 1010 Area【线段相交问题】

    链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1010 http://acm.hust.edu.cn/vjudge/ ...

  5. L268 A terrifying look at the consequences of climate change

    Climate change is a devilish problem for humanity: at once urgent and slow-moving, immediate and dis ...

  6. Why I Left the .NET Framework

    The .NET Framework was good. Really good. Until it wasn't. Why did I leave .NET? In short, it constr ...

  7. 每日英语:How Often Do Gamblers Really Win?

    The casino billboards lining America's roadways tantalize with the lure of riches. 'Easy Street. It' ...

  8. Social media users of the world unite!

    Social media users of the world unite!全世界社交媒体用户联合起来!If Plato were alive today, he might well regard ...

  9. TEXT 8 Ready, fire, aim

    TEXT 8 Ready, fire, aim 预备!开火!瞄准!! Feb 16th 2006 From The Economist print edition Foreword:A vice-pr ...

  10. 【256】◀▶IEW-答案

    附答案 Unit I Fast food Model Answers: Model 1 The pie chart shows the fast foods that teenagers prefer ...

随机推荐

  1. windows11中使用ctypes运行时出错:AttributeError: function *** not found

    最近我在研究用ctypes实现python调用c,按照晚上的教程写下了类似下面的c程序: #include <stdio.h> int nn_test(int num){ printf(& ...

  2. nodejs 反单引号用法(·)

    这个反单引号就是数字1旁边(~)下面的那个符号,平时用得很少,虽然单引号和双引号是使用较多的,但我们还有第三个方案,就是ES6中的模板字符串(反引号). 在nodejs中用反单引号(·)主要基于以下作 ...

  3. (十三).CSS3中的变换(transform),过渡(transition),动画(animation)

    1 变换 transform 1.1 变换相关 CSS 属性 CSS 属性名 含义 值 transform 设置变换方式 transform-origin 设置变换的原点 使用关键字或坐标设置位置 t ...

  4. 优先使用C++的别名声明(using)来替换typedef

    C++98中,我们如果想用简写的方式表达一个类型,那么可以使用typedef关键字: typedef std::unique_ptr<std::unordered_map<std::str ...

  5. C# async、await、Task 探讨

    test02.ProntOut(); ///*第五题*/ static class test02 { public static async void ProntOut() { Console.Wri ...

  6. Oracle 取Group By 第一条

    select *from (select emp.*,row_number() over(partition by deptno order by rownum) cn from emp)where ...

  7. 前端访问Tornado跨域问题解决

  8. Python使用Eel和HTML开发桌面应用GUI直接用web前端的VUE+VANT来做

    python的gui太难用了,唯一能配置独立前端的程序只有web.所以用web做前端,到python,完美! 环境准备    Python 3.9    Chrome浏览器(由于Eel是直接调用的Ch ...

  9. 视频播放-videojs

    视频播放-video-js组件 安装 yarn add video.js --save npm install video.js --save 代码 import React, { useEffect ...

  10. 如何加密一个sheel脚本!

    脚本写完后,如果要发布给其它人使用的话,可能会因安全原因而受阻,特别是脚本中包含密码等原因,而对脚本加密则可以解决此问题,本文提供了CentOS7/8环境下,加密shell脚本需要安装的程序和方法. ...