【机器学习基础】——另一个视角解释SVM
SVM的另一种解释
前面已经较为详细地对SVM进行了推导,前面有提到SVM可以利用梯度下降来进行求解,但并未进行详细的解释,本节主要从另一个视角对SVM进行解释,首先先回顾之前有关SVM的有关内容,然后从机器学习的三步走的角度去对SVM进行一个解释。
那么对于传统的机器学习,每个方法最大区别就是损失函数的选取,因此SVM可以看成是另一种损失函数的方法,这种损失函数就是Hinge Loss。另外SVM另一个特点就是使用了Kenel trick。

0. SVM内容回顾
前面说了SVM(主要是二分类)是希望找一个分离超平面,能够将数据分开,使得距离分离超平面最近的点的距离越远越好。

根据优化目标,优化函数变成:

为了使得模型更具有鲁棒性和泛化能力,引入一个松弛变量ξ:

然后就是对这个问题进行求解,主要求解方法就是多目标优化算法,引入拉格朗日因子α,问题转化为求解α,然后最终利用SMO算法求解的过程。
因为前面已有这部分内容,这里就不再赘述了。
下面就是从机器学习通用的方法来解释SVM算法。
1. SVM的另一种解释
在前面机器学习中,我们采用三步走:1、找一个function set,2、找一个衡量function好坏的loss function;3、根据loss function找出一个best function。

也就是我们希望找一个g(x),使得输入x使得正类样本输出大于0,负类样本输出小于0。那么对于loss function,最理想的情况下,当g(x)=y时,loss=0,当g(x)≠y时,loss=1。但通常δ(g(x)=y)这种loss是不可微的,因此这里loss function都用l(f(x),y)来表示。通过minimize l(f(x),y)来进行优化求解。具体地loss function也有多种,下面具体看几个(这里分类正类为1,负类为-1):

上图中一共有四种loss function:
①:Ideal loss,就是图中黑色的那条线,就是理想下的loss function,即当y=1,f(x)>0或y=-1,f(x)<0时loss为0,当二者不同号时loss为1。
②:square loss:也就是图中红色的线,其方程形式如下:

从图中则可以看出,当y与f(x)不同号时,没问题,则会有个loss,而当y与f(x)相乘很大时,也会产生一个很大的loss。这也就证明了为什么在分类时不能使用square loss这样的损失函数。
③:sigmoid + square loss:也就是图中蓝色的那条线,其方程形式如下:

图中可以看出当y与f(x)不同号时,当这个负数很小时,loss并没有继续增加,同样的当y与f(x)相乘很大时,同样还是有一个比较小的loss。在LR算法中提到过,通常不使用square loss,可能效果不好,这里可以更容易理解。在LR中往往使用的sigmoid + crossentropy。
④:sigmoid+crossentropy : 就是图中绿色的那条线,其方程形式及推导如下:

图中可以看出这个在y与f(x)不同号时,也就是目标值与真实值差距越大,损失也就越大,当y与f(x)相乘很大时,loss是趋于0。因此在分类中更多的是使用crossentropy损失。
而在SVM中,损失函数使用的则是Hinge Loss损失函数,其函数如图所示:

Hinge Loss的函数方程为:

把Hinge Loss与上面的那些损失函数画在一起进行一个对比:

图中可以看出,当y与f(x)同号时,且足够大,则loss=0,而在0~1之间时依然会有一定的损失,而当二者不同号时,loss则持续增大。
相比于cross entropy而言,在二者不同号时,二者基本相似,但是当二者同号,且足够大时,当大于1时,Hinge loss表现为已经足够了,不需要再优化了,而对于crossentropy,尽管已经做的很好了,但还是存在一定的loss,还要做的更好。这可能会导致模型的过拟合,因此SVM模型具有更强的泛化能力。
搞定了loss function之后,那么SVM算法的三个步骤如下:

第一步就是一个超平面的集合,这里将b合并进w中;
第二步就是一个Hinge loss,然后加上一个正则化项,两个凸函数相加仍然是个凸函数;
第三步就是直接利用梯度下降进行求解,这里虽然hinge loss存在不可导点,但是并非数据刚好落在不可导的地方,类似于maxpool中的求导。具体求导如下:

至此,SVM另一个角度进行解释和求解已经完成了,下面我们把这种形式的SVM与传统的SVM进行一个比较:
这里令:

那么损失函数可以写成:

而对于ε这个东西,它与下面这两个式子:

原本二者不是等价的,因为上面的方框是一个确定的值,而下面的方框则表示的是一个范围,但是当加上minimize之后,两个红色的框上的内容就是等价的。
经过变形yf(x)>1-ε,那么ε就是松弛变量。
2.SVM中的核方法
在说核方法之前,首先是上面问题的求解,在进行梯度下降求解之后,可以得到:

这就是SVM的对偶问题,将求w最后转化为求α得问题上。而对于上面这个式子,在传统SVM中,使用的是拉格朗日求极值的方法,从而得到SVM的对偶问题,这里我们利用梯度下降:

假设初始化w1=0(矩阵),那么,最终w则为:

这里c(w)里有很多是0的项,因为一部分的求导为0,因此,w*最后就是最开始那个式子,最终问题就变成求解α了,具体求解方法前面SMO算法已经说过,这里就不再说了。
那些不为0的α就是所谓的“支持向量”,这里也能更好地理解什么是支持向量。

然后,w就可以写成下面这样的形式:

再带回原方程中f(x)中,则有:

最终f(x)变成了所需要使用核方法的形式:

同时,要找一组α={α1,α2,......,αn},使得损失函数L最小:

在核技巧中我们并不需要知道x和xn(在高维空间中)是什么,只需要知道K(xn,x)的值就可以。
直接计算K(x,z)往往比先映射到高维空间再进行内积计算快的多,举个例子:
有一个x=[x1,x2],z=[z1,z2],我们进行转换,假设先转换成高维空间中的φ(x),φ(z),再相乘:

最终可以看到结果和直接进行相乘是一样的。
假设核函数为tanh函数,那么就有:

而当核函数是sigmoid函数的时候,那么此时SVM则可以看成是有一层隐藏层的神经网络:

该网络中神经元的个数就是支持向量的个数,而每个权重就是对应的样本点。
3.小结
上面就是从原始机器学习的角度去看待SVM,从原来求解QP问题的方法转变为梯度下降的方法,但最终落脚还是要继续求解α这样一个问题上。SVM最重要的两个特点一个是使用了Hinge Loss另一个就是核方法,而核方法在LR中也可以使用,但是由于SVM在进行分类时,只考虑支持向量,因此进行计算时相对较为快速,而LR是所有点参与计算,如果使用核方法则在高维空间中运算量过大,导致效率低,因此LR通常不采用核技巧。此外,相比于LR分类算法而言,SVM更具有鲁棒性。
【机器学习基础】——另一个视角解释SVM的更多相关文章
- 机器学习中的算法(2)-支持向量机(SVM)基础
版权声明:本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gma ...
- 转:机器学习中的算法(2)-支持向量机(SVM)基础
机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版 ...
- 机器学习 —— 基础整理(六)线性判别函数:感知器、松弛算法、Ho-Kashyap算法
这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在time ...
- Python机器学习基础教程-第2章-监督学习之线性模型
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
- Coursera台大机器学习基础课程1
Coursera台大机器学习基础课程学习笔记 -- 1 最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一 机器学习是什么? 感觉和 Tom M. Mitche ...
- 算法工程师<机器学习基础>
<机器学习基础> 逻辑回归,SVM,决策树 1.逻辑回归和SVM的区别是什么?各适用于解决什么问题? https://www.zhihu.com/question/24904422 2.L ...
- 100天搞定机器学习|Day16 通过内核技巧实现SVM
前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...
- Python机器学习基础教程-第2章-监督学习之决策树集成
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
- Python机器学习基础教程-第2章-监督学习之决策树
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
随机推荐
- 一文详解 FTP、FTPS 与 SFTP 的原理
开源Linux 长按二维码加关注~ 上一篇:2020年MySQL数据库面试题总结 无论是网盘还是云存储,上传都是一项很简单的操作.那些便捷好用的上传整理工具所用的 FTP 协议到底是什么意义,繁杂的模 ...
- web框架的本质、MVC框架MTV框架的介绍
1.web框架的本质 所有的Web应用本质上就是一个socket服务端,而用户的浏览器就是一个socket客户端,基于请求做出响应,客户都先请求,服务端做出对应的响应,按照http协议的请求协议发送请 ...
- EF Core 配置模型
0 前言 本文的第一节,会概述配置模型的作用(对数据模型的补充描述). 第二节描述两种配置方式,即:数据注释(data annotations)和 Fluent API 方式. 第三节开始,主要是将常 ...
- 用python实现输入三边判断能否组成三角形
# -*- coding: utf-8 -*-# Form implementation generated from reading ui file 'sanjiaoxing.py'## Creat ...
- 获取并检查系统负载\CPU\内存\磁盘\网络
安装依赖 需要net-tools.namp! CentOS:yum -y install net-tools nmap Ubuntu:apt-get update && apt-get ...
- git指令使用
仓库为空,本地创建git项目之后提交到仓库中1.创建项目文件夹(本地git仓库)2.在项目文件夹中右键:选择Git Bash3.初始化项目:git init -- 会出现一个.git的隐藏文件夹4.将 ...
- 【雅礼集训 2017 Day2】棋盘游戏
loj 6033 description 给一个\(n*m\)的棋盘,'.'为可通行,'#'为障碍.Alice选择一个起始点,Bob先手从该点往四个方向走一步,Alice再走,不能走走过的点,谁不能动 ...
- DYOJ 【20220317模拟赛】瞬间移动 题解
瞬间移动 题意 三维空间中从 \((0,0,0)\) 开始,每次移动 1,问刚好走 \(N\) 次能到 \((X,Y,Z)\) 的方案数 \(N\le10^7\),答案模 \(998244353\) ...
- 2021.06.12【NOIP提高B组】模拟 总结
T1 题目大意:有 \(n\) 个点,到点 \(i\) 可以获得 \(A_i\) ,同时消耗 \(B_i\) 若当前价值小于 \(B_i\) 则不能到,问从 \(P\) 开始,任一点结束后的最大值. ...
- C++ 炼气期之算术运算符
1. 前言 编写程序时,数据确定后,就需要为数据提供相应的处理逻辑(方案或算法).所谓逻辑有 2 种存在形态: 抽象形态:存在于意识形态,强调思考过程,与具体的编程语言无关. 具体形态:通过代码来实现 ...