VP视频结构化框架
完成多路视频并行接入、解码、多级推理、结构化数据分析、上报、编码推流等过程,插件式/pipe式编程风格,功能上类似英伟达的deepstream和华为的mxvision,但底层核心不依赖复杂难懂的gstreamer框架(少部分地方需要),框架主干部分主要使用原生C++ STL实现,目标是平台高可移植性。框架可用于:视频结构化、以图搜图、目标行为分析等应用领域。
主要功能
- 视频接入,支持file/rtsp/udp/rtmp等主流视频流协议;
- 多级推理,自带检测/分类/特征提取等推理插件。默认使用opencv.dnn实现,可基于其他类似tensorrt、甚至原生的pytorch/tensorflow扩展新的推理插件;
- 目标跟踪,自带基于iou的跟踪插件,可基于其他算法扩展新的跟踪插件;
- 行为分析,自带若干行为分析插件,比如目标跨线、拥堵/目标聚集判断;
- 图像叠加,结构化数据和视频融合显示;
- 消息推送,自带基于kafka的消息推送插件,可基于其他消息中间件扩展新的插件;
- 录像/截图,自带截图/录像插件;
- 编码输出,支持file/screen/rtmp/rtsp等主流方式输出编码结果;
主要特点
- 可视化调试,自带pipe可视化功能,可在界面实时显示pipe的运行状态,如pipe中各个环节的fps/缓存队列大小,以及计算pipe起/止插件之间的时间延时,帮助程序员快速定位性能瓶颈位置;
- 插件与插件之间默认采用“smart pointer”传递数据,数据从头到尾,只需创建一次,不存在拷贝操作。当然,可根据需要设置“深拷贝”方式在插件之间传递数据;
- pipe中各通道视频的fps、分辨率、编码方式、来源均可不同,并且可单独暂停某一通道;
- pipe中可传递的数据只有两种,一种frame_meta数据、一种control_meta数据,结构清晰明了;
- 插件组合方式自由,在满足客观逻辑的前提下,可合并、可拆分,根据需要设计不同的pipe结构。同时自带pipe结构检查功能,识别出不合规的pipe结构;
- pipe支持各种hook,外部通过hook可以实时获取pipe的运行情况(第1点就是基于该特性实现);
- 基于指定基类,所有自带插件全部可自定义重新实现;
- 框架主干代码完全基于原生C++ STL实现,跨平台编译部署简单。
目前进度
- 2022/7/22:已完成主干框架开发,预估占总体进度的1/3。等基本完成后开源,有兴趣的朋友可以关注。
下面第一张图显示pipe构建过程,第二张图自动显示pipe结构、并实时刷新pipe运行状态:
VP视频结构化框架的更多相关文章
- VideoPipe可视化视频结构化框架开源了!
完成多路视频并行接入.解码.多级推理.结构化数据分析.上报.编码推流等过程,插件式/pipe式编程风格,功能上类似英伟达的deepstream和华为的mxvision,但底层核心不依赖复杂难懂的gst ...
- VideoPipe可视化视频结构化框架新增功能详解(2022-11-4)
VideoPipe从国庆节上线源代码到现在经历过了一个月时间,期间吸引了若干小伙伴的参与,现将本阶段新增内容总结如下,有兴趣的朋友可以加微信拉群交流. 项目地址:https://github.com/ ...
- [AI开发]基于DeepStream的视频结构化解决方案
视频结构化的定义 利用深度学习技术实时分析视频中有价值的内容,并输出结构化数据.相比数据库中每条结构化数据记录,视频.图片.音频等属于非结构化数据,计算机程序不能直接识别非结构化数据,因此需要先将这些 ...
- 视频结构化 AI 推理流程
「视频结构化」是一种 AI 落地的工程化实现,目的是把 AI 模型推理流程能够一般化.它输入视频,输出结构化数据,将结果给到业务系统去形成某些行业的解决方案. 换个角度,如果你想用摄像头来实现某些智能 ...
- [AI开发]视频结构化类应用的局限性
算法不是通用的,基于深度学习的应用系统不但做不到通用,即使对于同一类业务场景,还需要为每个场景做定制.特殊处理,这样才能有可能到达实用标准.这种局限性在计算机视觉领域的应用中表现得尤其突出,本文介绍基 ...
- [AI开发]零代码分析视频结构化类应用结构设计
视频结构化类应用涉及到的技术栈比较多,而且每种技术入门门槛都较高,比如视频接入存储.编解码.深度学习推理.rtmp流媒体等等.每个环节的水都非常深,单独拿出来可以写好几篇文章,如果没有个几年经验基本很 ...
- Spark如何与深度学习框架协作,处理非结构化数据
随着大数据和AI业务的不断融合,大数据分析和处理过程中,通过深度学习技术对非结构化数据(如图片.音频.文本)进行大数据处理的业务场景越来越多.本文会介绍Spark如何与深度学习框架进行协同工作,在大数 ...
- DeepLearning.ai学习笔记(三)结构化机器学习项目--week2机器学习策略(2)
一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫 ...
- Android组件化框架设计与实践
在目前移动互联网时代,每个 APP 就是流量入口,与过去 PC Web 浏览器时代不同的是,APP 的体验与迭代速度影响着用户的粘性,这同时也对从事移动开发人员提出更高要求,进而移动端框架也层出不穷. ...
随机推荐
- 聊聊C#中的Visitor模式
写在前面 Visitor模式在日常工作中出场比较少,如果统计大家不熟悉的模式,那么它榜上有名的可能性非常大.使用频率少,再加上很多文章提到Visitor模式都着重于它克服语言单分派的特点上面,而对何时 ...
- 1.Spring开发环境搭建——intellj
1.在intellj中新建项目,选择JDK版本(1.8版本) 2.选择相关信息填写,注意Java版本要和上面步骤选择的版本一致. 3.选择springBoot版本,勾选Spring Web选项. 4. ...
- 好客租房29-从jsx中抽离事件处理程序
从jsx中抽离过多js逻辑代码 会显得非常混乱 推荐:将逻辑抽离到单独的方法中 保证jsx结构清晰 //导入react import React from 'react' ...
- Java有根儿:Class文件以及类加载器
JVM 是Java的基石,Java从业者需要了解.然而相比JavaSE来讲,不了解JVM的一般来说也不会影响到工作,但是对于有调优需求或者系统架构师的岗位来说,JVM非常重要.JVM不是一个新的知识, ...
- dotnet-cnblog-tool 图片上传失败问题
dotnet-cnblog-tools 这个工具是将本地的 Markdown 文件转换为 可以上传到 cnblog 的格式,并且会将图片自动上传到 cnblog 的图床. 具体可以参考这篇文章: cn ...
- 【原创】项目四Tr0ll-1
实战流程 1.nmap枚举 nmap -sP 192.168.186.0/24 nmap -p- 192.168.186.142 nmap 192.168.186.142 -p- -sS -sV -A ...
- Docker容器编译安装Nginx
Docker容器编译安装Nginx,最简单的Nginx配置. 创建容器&进入容器 宿主机2080映射容器的80端口 [root@localhost ~]# docker run -i -d - ...
- Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme-2013:解读
本文记录阅读此论文的笔记 摘要 (1)1996年,HPS三人提出一个格上的高效加密方案,叫做NTRUEncrypt,但是没有安全性证明:之后2011年,SS等人修改此方案,将其安全规约到标准格上的困难 ...
- javaEE-IDEA创建项目-使用Mybatis
新建项目 点Next之后给项目命名 创建如下文件夹以及文件 修改pom.xml, 加入 <dependencies> <!-- junit单元测试 --> <depend ...
- Win 系统下使用gnvm操作node版本
下载 gnvm官方网址 有好几种安装方式,我这里使用的是百度网盘下载. 安装 下载完成将gnvm.exe文件放到node的安装根目录下,如果你不知道安装目录在哪?可以使用命令: where node ...