题面

题解

通过一句经典的话“最大值的最小值” 我判断它是二分题,

不难发现,整个图形中两个省的分界线是一条单调不递减或单调不递增的折线。

而且,越到后来它的最大值只会越来越大,最小值只会越来越小,极差只会越来越大。

所以如果我们把ans上界定下来了,我们就可以贪心的让它其中一个区域的值在 [maxa - ans , maxa] 的灰色地带发展,然后判断另一个区域是否合法。由于另一个区域的点数越少越好,所以在灰色地带要尽量发展得广。

我们只能先定义一个 p 表示当前行两省的分界, 然后在第一行尽量扩展得远,下一行在 [0 , p]之间扩展得远,这样不仅可以让另一个区域的点更少,而且可以让下一行有更大的发展空间。

其它的贪心方法就不行了,所以分别行数从小到大和从大到小各枚举一次,然后做个左右对称再来。

CODE

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#define LL long long
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9'){x = x * 10 + s - '0';s = getchar();}
return x * f;
}
LL n,m,i,j,s,o,k,flag = 0;
LL a[2005][2005];
int b[2005],c[2005];
int x1 = 1,x2 = 1,y1 = 1,y2 = 1;
LL maxl[2005][2005];
LL maxr[2005][2005];
LL minl[2005][2005];
LL minr[2005][2005];
LL ans = 1e18;
bool check(LL mid) {
LL minn = a[x1][y1] - mid;
// cout<<minn<<endl;
LL p = m,mi1 = 0x7f7f7f7f,mi2 = 0x7f7f7f7f,ma1=0,ma2=0;
for(int i = 1;i <= n;i ++) {
int pp = p;
for(int j = 0;j <= pp;j ++) {
if(minl[i][j] >= minn) {
p = j;
}
}
mi1 = min(mi1,minl[i][p]);
ma1 = max(ma1,maxl[i][p]);
mi2 = min(mi2,minr[i][p + 1]);
ma2 = max(ma2,maxr[i][p + 1]);
}
// cout<<"ok1"<<endl;
if(max(ma1 - mi1,ma2 - mi2) <= mid) return 1;
p = m,mi1 = 0x7f7f7f7f,mi2 = 0x7f7f7f7f,ma1=0,ma2=0;
for(int i = n;i > 0;i --) {
int pp = p;
for(int j = 0;j <= pp;j ++) {
if(minl[i][j] >= minn) {
p = j;
}
}
mi1 = min(mi1,minl[i][p]);
ma1 = max(ma1,maxl[i][p]);
mi2 = min(mi2,minr[i][p + 1]);
ma2 = max(ma2,maxr[i][p + 1]);
}
// cout<<"ok2"<<endl;
if(max(ma1 - mi1,ma2 - mi2) <= mid) return 1;
p = 0,mi1 = 0x7f7f7f7f,mi2 = 0x7f7f7f7f,ma1=0,ma2=0;
for(int i = 1;i <= n;i ++) {
int pp = p;
for(int j = m;j >= pp;j --) {
if(minr[i][j + 1] >= minn) {
p = j;
}
}
mi1 = min(mi1,minl[i][p]);
ma1 = max(ma1,maxl[i][p]);
mi2 = min(mi2,minr[i][p + 1]);
ma2 = max(ma2,maxr[i][p + 1]);
}
// cout<<"ok3"<<endl;
if(max(ma1 - mi1,ma2 - mi2) <= mid) return 1;
p = 0,mi1 = 0x7f7f7f7f,mi2 = 0x7f7f7f7f,ma1=0,ma2=0;
for(int i = n;i > 0;i --) {
int pp = p;
for(int j = m;j >= pp;j --) {
if(minr[i][j + 1] >= minn) {
p = j;
}
}
// printf("p---%d\n",p);
mi1 = min(mi1,minl[i][p]);
ma1 = max(ma1,maxl[i][p]);
mi2 = min(mi2,minr[i][p + 1]);
ma2 = max(ma2,maxr[i][p + 1]);
}
// cout<<"ok4"<<endl;
if(max(ma1 - mi1,ma2 - mi2) <= mid) return 1;
return 0;
}
LL solve(LL l,LL r) {
// printf("%lld %lld\n",l,r);
if(l >= r - 1) {
if(check(l)) return l;
return r;
}
LL mid = (l + r) / 2;
if(check(mid)) return solve(l,mid);
return solve(mid,r);
}
int main() {
n = read();m = read();
for(int i = 1;i <= n;i ++) {
minl[i][0] = 1e18;
for(int j = 1;j <= m;j ++) {
a[i][j] = read();
if(a[i][j] > a[x1][y1]) x1 = i,y1 = j;
if(a[i][j] < a[x2][y2]) x2 = i,y2 = j;
minl[i][j] = min(minl[i][j - 1],a[i][j]);
maxl[i][j] = max(maxl[i][j - 1],a[i][j]);
}
minr[i][m + 1] = 1e18;
for(int j = m;j > 0;j --) {
minr[i][j] = min(minr[i][j + 1],a[i][j]);
maxr[i][j] = max(maxr[i][j + 1],a[i][j]);
}
// for(int j = 1;j <= m;j ++) {
// printf("%lld ",minr[i][j]);
// }putchar('\n');
}
printf("%lld\n",solve(0,a[x1][y1] - a[x2][y2]));
return 0;
}

JOIOI王国 - 二分+贪心的更多相关文章

  1. 「JOI 2017 Final」JOIOI 王国

    「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...

  2. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  3. Codeforces Gym 100231B Intervals 线段树+二分+贪心

    Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description 给你n个区间,告诉你每个区间内都有ci个数 然后你需要 ...

  4. 2016-2017 ACM-ICPC CHINA-Final Ice Cream Tower 二分+贪心

    /** 题目:2016-2017 ACM-ICPC CHINA-Final Ice Cream Tower 链接:http://codeforces.com/gym/101194 题意:给n个木块,堆 ...

  5. 【bzoj2097】[Usaco2010 Dec]Exercise 奶牛健美操 二分+贪心

    题目描述 Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑.这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径. ...

  6. Codeforces_732D_(二分贪心)

    D. Exams time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...

  7. CF732D Exams 二分 贪心

    思路:二分+贪心 提交次数:10次以上 错因:刚开始以为二分(边界,$+1or-1$)写错了,调了半天,后来才发现是$ck()$写错了.开始只判了最后是否小于零,而应该中间一旦小于零就$return\ ...

  8. $CF949D\ Curfew$ 二分/贪心

    正解:二分/贪心 解题报告: 传送门$QwQ$ 首先这里是二分还是蛮显然的?考虑二分那个最大值,然后先保证一个老师是合法的再看另一个老师那里是否合法就成$QwQ$. 发现不太会搞这个合不合法的所以咕了 ...

  9. $bzoj2067\ szn$ 二分+贪心

    正解:二分+贪心 解题报告: 传送门$QwQ$ 题目大意就说有一棵树,然后要用若干条线覆盖所有边且不能重叠.问最少要用几条线,在用线最少的前提下最长的线最短是多长. 昂首先最少用多少条线这个还是蛮$e ...

随机推荐

  1. 31.Squid缓存代理服务器应用

    Squid缓存代理服务器应用 Squid安装介绍 web缓存的工作机制 缓存网页对象,减少重复请求 squid 主要提供缓存加速.应用层过滤控制的功能. 工作机制 代替客户机问网站请求数据,从而可以隐 ...

  2. BUUCTF-刷新过的图片

    刷新过的图片 刷新在MISC中比较特殊,一般是指F5隐写方式 直接使用工具提取出来,发现生成的是Pk开头的,应该是zip格式 使用16进制确认了是ZIP,将生成的output.txt改为output. ...

  3. linux-基于tensorflow2.x的手写数字识别-基于MNIST数据集

    数据集 数据集下载MNIST 首先读取数据集, 并打印相关信息 包括 图像的数量, 形状 像素的最大, 最小值 以及看一下第一张图片 path = 'MNIST/mnist.npz' with np. ...

  4. CAP:多重注意力机制,有趣的细粒度分类方案 | AAAI 2021

    论文提出细粒度分类解决方案CAP,通过上下文感知的注意力机制来帮助模型发现细微的特征变化.除了像素级别的注意力机制,还有区域级别的注意力机制以及局部特征编码方法,与以往的视觉方案很不同,值得一看 来源 ...

  5. Error: $injector:modulerr Module Error

    Failed to instantiate module app due to://实例化失败 Error: [$injector:modulerr] http://errors.angularjs. ...

  6. 写出个灵活的系统竟然可以如此简单!小白也能写出高级的Java业务!

    一 最近正好公司里有个需求,一个短信业务接了多个第三方供应商,某些业务需要查询第三方供应商剩余的短信包数量去选择剩余量最多的渠道去批量发送.有些业务是指定了某个短信供应商,有些场景需要根据业务的值去动 ...

  7. ubuntu20.04安装测试uhttpd

    uhttpd是openwrt上运行一个高效小型Http服务,支持cgi, lua等特性.可以直接通过snap方式安装,如果是16.04,18.04或者20.04,snap已经默认安装了:如果是其它版本 ...

  8. 数论之欧几里德gcd

    序:这篇博客我最开始学的时候写的,后来又学了一遍,自我感觉这篇好像有问题,扩展欧几里得建议走这边 首先先说,欧几里德一共有俩,欧几里德和扩展欧几里德,前者非常简单,后者直接变态(因为我太菜) gcd ...

  9. 解决报错Error response from daemon: Get https://10.0.0.110/v2/: dial tcp 10.0.0.110:443: connect: connection refused

    修改 #https不需要验证,否则要加上以下配置# 意思就是非安全仓库,加上重启就OK了! vim /lib/systemd/system/docker.service --insecure-regi ...

  10. php static 和self区别

    static(关键字) 类似于 self(关键字) , 但它指向的是被调用的类(Document) 而不是包含类(DomainObject) , static 和 self 的区别: <?php ...