复习一下近期练习的入门 \(DP\) 。巨佬勿喷。\(qwq\)

重新写一遍练手,加深理解。

代码已经处理,虽然很明显,但请勿未理解就贺 \(qwq\)

0X00 P1057 [NOIP2008 普及组] 传球游戏

设 \(f[i][j]\) 表示传球 \(i\) 次后传到第 \(j\) 个人的方案数。

设小蛮为 \(1\) 号,则初始化 \(f[1][n]=1\),\(f[1][2]=1\)。

转移方程为 \(f[i][j]=f[i-1][j-1]+f[i-1][j+1]\) 只需特判 \(1\) 的左边变为 \(n\) ,\(n\) 的右边变为 \(1\) 即可。

Code:

#include<bits/stdc++.h>
using namespace std;
int f[35][35],n,m;
int turn(int x){
return x==n+1?1:(x==0?n:x);
}
int main(){
scanf("%d%d",&n,&m);
f[1][n]=f[1][2]=1;
for(int i=2;i<=m;i++){
for(int j=1;j<=n;j++){
f[i][j]=f[i-1][turn(j-1)]+f[i-1][turn(j+1)];
}
}
printf("%d",f[m][1]);
return 73;
}

0X01 P1060 [NOIP2006 普及组] 开心的金明

emmm。背包板题。纯属练手。

Code:

#include<bits/stdc++.h>
using namespace std;
int n,t,v[35],p[35],f[30005];
int main(){
scanf("%d%d",&t,&n);
for(int i=1;i<=n;i++) scanf("%d%d",&v[i],&p[i]);
for(int i=1;i<=n;i++){
for(int j=t;j>=v[i];j--) f[j]=max(f[j],f[j-v[i]]+p[i]*v[i]);
}
printf("%d",f[t]);
return 76;
}

0X02 P1509 找啊找啊找GF

不得不说题面有点那啥

二维的背包,因为有 \(rmb\) 和 \(rp\) 两个条件要考虑。

同时这题也需要两个 \(DP\) 数组。一个 \(fn[i][j]\) 记录:花费 \(i\) 的 \(rmb\) , \(j\) 的 \(rp\) 可以约的 MM 数量。另一个 \(ft[i][j]\) 记录:花费 \(i\) 的 \(rmb\) , \(j\) 的 \(rp\) 最小的花费时间。

因为数组变量太长了看着不舒服,所以我把转移写成了这样:

int t1=fn[j-rmb[i]][k-rp[i]]+1,t2=ft[j-rmb[i]][k-rp[i]]+tim[i];
if(fn[j][k]<t1){ //如果人数更多就一定更优
fn[j][k]=t1;
ft[j][k]=t2;
}
if(fn[j][k]==t1) ft[j][k]=min(ft[j][k],t2); //人数相等看能不能更新ft

幸好我没有 sqybi 这种痛苦

Code:

#include<bits/stdc++.h>
using namespace std;
int n,rmb[105],rp[105],tim[105],m,r;
int fn[105][105],ft[105][105];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d%d%d",&rmb[i],&rp[i],&tim[i]);
scanf("%d%d",&m,&r);
for(int i=1;i<=n;i++){
for(int j=m;j>=rmb[i];j--){
for(int k=r;k>=rp[i];k--){
int t1=fn[j-rmb[i]][k-rp[i]]+1,t2=ft[j-rmb[i]][k-rp[i]]+tim[i];
if(fn[j][k]<t1){
fn[j][k]=t1;
ft[j][k]=t2;
}
if(fn[j][k]==t1) ft[j][k]=min(ft[j][k],t2);
}
}
}
printf("%d",ft[m][r]);
return 111;
}

0X03 P1091 [NOIP2004 提高组] 合唱队形

用 \(DP\) 跑一遍到每个点的最大上升子序列,再跑一遍倒序的最大下降子序列,最后求可以留下来的 \(max\) ,用 \(n\) 减掉即可。

用 \(f[0][i]\) 表示最大上升子序列, \(f[1][i]\) 表示最大下降子序列。因为相等的也会出列,所以注意不加等号。

同时也可以用这个思路过 未加强的导弹拦截

Code:

#include<bits/stdc++.h>
using namespace std;
int n,a[105],f[2][105],ans;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
for(int j=0;j<i;j++){
if(a[i]>a[j]) f[0][i]=max(f[0][i],f[0][j]+1);
}
}
for(int i=n;i>=1;i--){
for(int j=n+1;j>i;j--){
if(a[i]>a[j]) f[1][i]=max(f[1][i],f[1][j]+1);
}
}
for(int i=1;i<=n;i++) ans=max(f[0][i]+f[1][i]-1,ans);
printf("%d",n-ans);
return 118;
}

0X04 P1279 字串距离

用 \(f[i][j]\) 表示 \(A\) 字符串取到前 \(i\) 位, \(B\) 字符串取到前 \(j\) 位时,答案的最小值。

因为求最小值,所以把 \(f\) 初始化为极大值。再把 \(f[0][0]\) 初始化为 \(0\),将所有的 \(f[0][i]\) 与 \(f[i][0]\) 初始化为 \(i \times k\) (\(k\) 为空格与字符匹配代价,也就是初始化全是空格的情况)。

转移时分类讨论:

首先考虑一个字符与一个空格匹配的情况,得出 \(f[i][j]=min(f[i][j],min(f[i][j-1],f[i-1][j])+k)\)。

再考虑两个字符匹配的情况,得出 \(f[i][j]=min(f[i][j],f[i-1][j-1]+abs(a[i]-b[j]))\)。

空格与空格匹配没有意义。

Code:

#include<bits/stdc++.h>
using namespace std;
string x,y;
int a[2005],b[2005],f[2005][2005],n,m,k;
void init(){
for(int i=0;i<n;i++) a[i+1]=x[i];
for(int i=0;i<m;i++) b[i+1]=y[i];
memset(f,0x3f,sizeof(f));
f[0][0]=0;
for(int i=1;i<=max(m,n);i++) f[i][0]=f[0][i]=i*k;
}
int main(){
cin>>x>>y;
n=x.size(),m=y.size();
scanf("%d",&k);
init();
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
f[i][j]=min(f[i][j],min(f[i][j-1],f[i-1][j])+k);
f[i][j]=min(f[i][j],f[i-1][j-1]+abs(a[i]-b[j]));
}
}
printf("%d",f[n][m]);
return 101;
}

注意,双倍经验 ↓ ↓ ↓

0X05 P1140 相似基因

大体思路和上一题相同,只要把匹配的分值改成题目给的表即可。(我才不会告诉你我第一次抄错了)

还要注意一下初始化和转移的小改动。

Code:

#include<bits/stdc++.h>
using namespace std;
int a[105],b[105],f[105][105],n,m;
string x,y;
int t[5][5]{
{5,-1,-2,-1,-3},
{-1,5,-3,-2,-4},
{-2,-3,5,-2,-2},
{-1,-2,-2,5,-1},
{-3,-4,-2,-1,0}
};
void turn(int n,int a[],string s){
for(int i=0;i<n;i++){
if(s[i]=='A') a[i+1]=0;
if(s[i]=='C') a[i+1]=1;
if(s[i]=='G') a[i+1]=2;
if(s[i]=='T') a[i+1]=3;
}
}
void init(){
memset(f,-0x3f,sizeof(f));
f[0][0]=0;
for(int i=1;i<=n;i++) f[i][0]=f[i-1][0]+t[a[i]][4];
for(int i=1;i<=m;i++) f[0][i]=f[0][i-1]+t[4][b[i]];
}
int main(){
scanf("%d",&n);cin>>x;
scanf("%d",&m);cin>>y;
turn(n,a,x);turn(m,b,y);
init();
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
f[i][j]=max(f[i-1][j]+t[a[i]][4],f[i][j-1]+t[4][b[j]]);
f[i][j]=max(f[i][j],f[i-1][j-1]+t[a[i]][b[j]]);
}
}
printf("%d",f[n][m]);
return 67;
}

0X06 P1006 [NOIP2008 提高组] 传纸条

可以看成是走两条不相交的,从 \((1,1)\) 到 \((n,m)\) 的路径的最大值。

设 \(f[i][j][x][y]\) 表示第一条走到 \((i,j)\),第二条走到 \((x,y)\) 时的最大值。

转移方程:

\(f[i][j][x][y]=\)

$max {f[i-1][j][x-1][y],f[i][j-1][x][y-1],

f[i][j-1][x-1][y],f[i-1][j][x][y-1] } $

\(+a[i][j]+a[x][y]\)

注意,因为两条路不能走到同一个点,所以当 \(i=x\) 并且 \(j=y\) 时,\(f[i][j][x][y]\) 要减掉 \(a[i][j]\)。

Code:

#include<bits/stdc++.h>
using namespace std;
int f[55][55][55][55],a[55][55],n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
for(int x=1;x<=n;x++){
for(int y=1;y<=m;y++){
int t=max(max(f[i-1][j][x-1][y],f[i][j-1][x][y-1]),
max(f[i][j-1][x-1][y],f[i-1][j][x][y-1]));
f[i][j][x][y]=t+a[i][j]+a[x][y];
if(i==x&&j==y) f[i][j][x][y]-=a[i][j];
}
}
}
}
printf("%d",f[n][m][n][m]);
return 89;
}

注意,双倍经验 ↓ ↓ ↓

0X07 P1004 [NOIP2000 提高组] 方格取数

前一题题意化简版,范围也更小。改一下读入和输出即可。

#include<bits/stdc++.h>
using namespace std;
int f[15][15][15][15],a[15][15],n;
int u,v,c;
int main(){
scanf("%d",&n);
for( ; ; ){
scanf("%d%d%d",&u,&v,&c);
if(u==0&&v==0&&c==0) break;
a[u][v]=c;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int x=1;x<=n;x++){
for(int y=1;y<=n;y++){
int t=max(max(f[i-1][j][x-1][y],f[i][j-1][x][y-1]),
max(f[i][j-1][x-1][y],f[i-1][j][x][y-1]));
f[i][j][x][y]=t+a[i][j]+a[x][y];
if(i==x&&j==y) f[i][j][x][y]-=a[i][j];
}
}
}
}
printf("%d",f[n][n][n][n]);
return 89;
}

0X08 P1435 [IOI2000]回文字串/[蓝桥杯2016省]密码脱落

设 \(f[i][j]\) 表示 将从 \(i\) 到 \(j\) 的字串变为回文最少要插入的字符数。

此时我们只需要枚举区间长度 \(k\) 和 左端点 \(i\),可以计算出右端点 \(j=i+k\)(直接枚举 \(i\) 和 \(j\) 是错误的)。

由此可以得出对于区间 \((i,j)\) 的转移方程:

若 \(s[i]=s[j]\):\(f[i][j]=f[i+1][j-1]\) (不用改)

若 \(s[i] \ne s[j]\) :\(f[i][j]=min(f[i+1][j],f[i][j-1])+1\) (取较小值加一次)

Code:

#include<bits/stdc++.h>
using namespace std;
int f[1005][1005],n;
string s;
int main(){
cin>>s;
n=s.size();
for(int i=n;i>=1;i--) s[i]=s[i-1];
for(int k=1;k<n;k++){
for(int i=1;i<=n-k;i++){
int j=i+k;
if(s[i]==s[j]) f[i][j]=f[i+1][j-1];
else f[i][j]=min(f[i+1][j],f[i][j-1])+1;
}
}
printf("%d",f[1][n]);
return 33;
}

【笔记】入门DP的更多相关文章

  1. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  2. PHP学习笔记 - 入门篇(5)

    PHP学习笔记 - 入门篇(5) 语言结构语句 顺序结构 eg: <?php $shoesPrice = 49; //鞋子单价 $shoesNum = 1; //鞋子数量 $shoesMoney ...

  3. PHP学习笔记 - 入门篇(4)

    PHP学习笔记 - 入门篇(4) 什么是运算符 PHP运算符一般分为算术运算符.赋值运算符.比较运算符.三元运算符.逻辑运算符.字符串连接运算符.错误控制运算符. PHP中的算术运算符 算术运算符主要 ...

  4. PHP学习笔记 - 入门篇(3)

    PHP学习笔记 - 入门篇(3) 常量 什么是常量 什么是常量?常量可以理解为值不变的量(如圆周率):或者是常量值被定义后,在脚本的其他任何地方都不可以被改变.PHP中的常量分为自定义常量和系统常量 ...

  5. PHP学习笔记--入门篇

    PHP学习笔记--入门篇 一.Echo语句 1.格式 echo是PHP中的输出语句,可以把字符串输出(字符串用双引号括起来) 如下代码 <?php echo "Hello world! ...

  6. LESS学习笔记 —— 入门

    今天在网上完成了LESS的基础学习,下面是我的学习笔记.总共有三个文件:index.html.main.less.mian.css,其中 mian.css 是 main.less 经过Koala编译之 ...

  7. HDU 2571 命运 (入门dp)

    题目链接 题意:二维矩阵,左上角为起点,右下角为终点,如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) ,其中k>1.问最大路径和. 题解:入门dp,注意负 ...

  8. 【C/C++】日期问题/算法笔记/入门模拟

    最近把算法竞赛入门经典的前半部分看完了,开始看算法笔记入门算法. 看了前半部分的例题,很多是算法竞赛入门经典中出现过的,但是感觉这本书写的更适合初学者,而且真的很像考试笔记,通俗易懂. //日期问题 ...

  9. 【学习笔记】dp入门

    知识点 动态规划(简称dp),可以说是各种程序设计中遇到的第一个坎吧,这篇博文是我对dp的一点点理解,希望可以帮助更多人dp入门.   先看看这段话 动态规划(dynamic programming) ...

随机推荐

  1. 【lwip】005-lwip内核框架剖析

    目录 前言 5.1 lwip初始化 5.2 内核超时 5.2.1 内核超时机制 5.2.2 周期定时机制 5.2.3 内核超时链表数据结构 5.2.4 内核超时初始化 5.2.6 超时的溢出处理 5. ...

  2. 常用的SSH,你了解多少?(长文警告)

    1.SSH工作原理 从ssh的加密方式说开去,看下文 1.1.对称加密 客户端和服务端采用相同的密钥进行数据的加解密,很难保证密钥不丢失,或者被截获.隐藏着中间人攻击的风险 如果攻击者插在用户与远程主 ...

  3. KingbaseES insert all/first 功能介绍

    KingbaseES 内置了对于insert all / first 语法的支持. 一.数据准备 create table t1(product_id number, product_name var ...

  4. maven-scope属性

    Maven 中的 scope 属性解释 <dependency> <groupId>org.glassfish.web</groupId> <artifact ...

  5. Maven 过滤问题

    <build> <resources> <resource> <directory>src/main/resources</directory&g ...

  6. Markdown学习 .md学习

    # Markdown学习## 标题## 二级标题### 三级标题#### 四级标题## 字体**两个*是粗体***一个是斜体****三个是斜体加粗***~~两个~是删除线~~## 引用>走向人生 ...

  7. 【To B产品怎么做?】泛用户体验

    目录 - 什么是泛用户体验? - 如何做好泛用户体验? - 泛用户体验有什么用? *预计阅读时间15分钟 不知道你有没有过这种体验,客服妹子的声音软糯,氛围微妙,用词标准,张口就是:给你带来了不好的体 ...

  8. paddleocr安装与图片识别快速开始

    本文首发我的个人博客:paddleocr安装教程快速开始 1. 安装Python环境 wget https://mirrors.huaweicloud.com/python/3.8.5/Python- ...

  9. Springboot配置文件参数使用docker-compose实现动态配置

    文章总结; Springboot配置文件中的一些参数可以写成变量的形式,具体变量的值可以从docker-compose.yml文件中设置来获取 在yml文件中,通过${Envirment_variab ...

  10. Alertmanager配置概述

    Alertmanager主要负责对Prometheus产生的告警进行统一处理,因此在Alertmanager配置中一般会包含以下几个主要部分: 全局配置(global):用于定义一些全局的公共参数,如 ...