[题解] Atcoder Regular Contest ARC 148 A B C E 题解
题目质量一言难尽(至少对我来说
所以我不写D的题解了
A - mod M
发现如果把M选成2,就可以把答案压到至多2。所以答案只能是1或2,只要判断答案能不能是1即可。如果答案是1,那么M必须是所有任意两个数的差的GCD的因子,只要检查这个GCD是否是1即可。实现的话之间取所有相邻两个数的GCD就行了。
时间复杂度\(O(nloga_i)\)。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define pb push_back
#define fi first
#define se second
#define mpr make_pair
using namespace std;
int n;
vector <int> v;
int main()
{
cin>>n;
int x;
rep(i,n)
{
scanf("%d",&x);
v.pb(x);
}
sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());
if(v.size()==1)
{
puts("1");
return 0;
}
int ans=0;
rep(i,v.size()-1) ans=__gcd(ans,v[i+1]-v[i]);
if(ans>1) puts("1");
else puts("2");
return 0;
}
B - dp
注意翻转次数可以是0的,所以先用原串更新一下答案。
考虑一个区间[l,r],我们把他翻转会是什么情况。首先这个区间中如果全是d肯定是不优的,不用考虑。其次,如果r的位置在原串中是d,那把r往左移,移到任意一个区间内p的位置再翻转,一定会更优。现在就已经确定了只有结尾是p的区间才可能被翻转,考虑一个右端点r,满足原串中它的位置是p,选择哪个左端点l翻转会最优(l可以等于r)。找出[0,r]中的第一个是p的位置x,很容易发现,如果l选在x右边,肯定不如直接选在x好。l选在x左边的话,如果[x,r]中全是p,那么显然选在x更好;否则找出[x,r]中最靠右的一个d,可以发现它会导致选x时的整个串第一个p的位置比选在x左边时的整个串第一个p的位置靠后,所以还是选在x最好。对于每个r,找出x,翻转[x,r],用这个串更新答案即可。
时间复杂度\(O(n^2)\)。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define pb push_back
#define fi first
#define se second
#define mpr make_pair
using namespace std;
int n;
string s,ans;
int main()
{
cin>>n>>s;
ans=s;
rep(i,n) if(s[i]=='p')
{
string t=s;t[i]='d';
ans=min(ans,t);
t=s;
rep(j,i) if(s[j]=='p')
{
reverse(t.begin()+j,t.begin()+i+1);
for(int k=j;k<=i;++k) if(t[k]=='p') t[k]='d';else t[k]='p';
ans=min(ans,t);
break;
}
}
cout<<ans<<endl;
return 0;
}
C - Lights Out on Tree
注意到一个节点最终的状态是它一开始的状态 异或上 从根到它的路径上被翻转节点数的奇偶性。所以如果有上下两个相邻节点初始状态不同,那么下面那个一定要挨一次翻转。如果根节点初始状态是正面,那么它也需要被翻转一次。发现只要翻转了上面提到的几种节点,整棵树就满足要求了。接下来主要问题就是对父亲节点和自己的初始状态不懂的节点计数。这个也是很容易做到的,因为这种节点只有两种,一种是在\(S_i\)集合里的,还有一种是集合中节点的直接儿子。求出集合中节点的儿子数量之和再减一下就行了,细节不再赘述。
时间复杂度\(O(n)\)。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define pb push_back
#define fi first
#define se second
#define mpr make_pair
using namespace std;
int n,q,p[200010],sn[200010],mark[200010];
int main()
{
cin>>n>>q;
for(int i=2;i<=n;++i)
{
scanf("%d",&p[i]);
++sn[p[i]];
}
repn(qn,q)
{
int m,x,ans=0,sum=0;
scanf("%d",&m);
vector <int> v;
rep(i,m) scanf("%d",&x),v.pb(x),mark[x]=qn,sum+=sn[x];
rep(i,m) if(v[i]==1||mark[p[v[i]]]!=qn) ++ans;else --sum;
ans+=sum;
printf("%d\n",ans);
}
return 0;
}
E - ≥ K
对我来说这E比D简单多了
把相邻两个元素之和\(\geq k\)转化一下,可以把每一个数先都加上\(\frac k2\),然后条件就变成相邻两个数之和非负,然后就好办多了。k可能是奇数,所以先把输入的所有数都乘2。
把负数和非负数分开,发现最终序列的结构是这样:
\]
也就是不能有两个负数相邻。还有就是与负数相邻的数的绝对值不得小于这个负数的绝对值。
这启发我们按照绝对值从大到小往序列里放数,绝对值相同的先放非负数再放负数。这样负数在被插入时就不会违反上面的第二个条件。观察发现插入一个负数时其实是占用了两个非负数之间的空隙(也可以是序列头尾的空间),这个空隙以后不能再放任何数(非负数也不行,因为会违反第一个条件),也可以看成是把旁边的两个非负数合并成1个了。具体来说,在插入某个特定绝对值的数时:

接下来

然后

这样这题就做完了,实现很简单。时间复杂度\(O(nlogn)\)。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <LL,LL>
#define pb push_back
#define fi first
#define se second
#define mpr make_pair
using namespace std;
const LL MOD=998244353;
LL qpow(LL x,LL a)
{
LL res=x,ret=1;
while(a>0)
{
if((a&1)==1) ret=ret*res%MOD;
a>>=1;
res=res*res%MOD;
}
return ret;
}
LL n,k,a[200010],ans=1,fac[400010],inv[400010];
map <LL,pii> mp;
LL C(LL nn,LL mm){return fac[nn]*inv[mm]%MOD*inv[nn-mm]%MOD;}
int main()
{
fac[0]=1;repn(i,400005) fac[i]=fac[i-1]*i%MOD;
rep(i,400003) inv[i]=qpow(fac[i],MOD-2);
cin>>n>>k;
rep(i,n) scanf("%lld",&a[i]),a[i]+=a[i]-k;
rep(i,n)
{
if(a[i]>=0) ++mp[-a[i]].fi;
else ++mp[a[i]].se;
}
LL len=1;
for(auto it:mp)
{
if(it.se.fi>0) (ans*=C(it.se.fi+len-1,len-1))%=MOD;
len+=it.se.fi;
if(it.se.se>len)
{
puts("0");
return 0;
}
(ans*=C(len,it.se.se))%=MOD;
len-=it.se.se;
}
cout<<ans<<endl;
return 0;
}
这几题代码都很短诶
[题解] Atcoder Regular Contest ARC 148 A B C E 题解的更多相关文章
- [题解] Atcoder Regular Contest ARC 146 A B C D 题解
点我看题 A - Three Cards 先把所有数按位数从多到少排序,答案的位数一定等于位数最多的三个数的位数之和\(tot\).对于每个i,把有i位的数排序,并记录每个i的排序结果.最后枚举答案中 ...
- [题解] Atcoder Regular Contest ARC 147 A B C D E 题解
点我看题 A - Max Mod Min 非常诈骗.一开始以为要观察什么神奇的性质,后来发现直接模拟就行了.可以证明总操作次数是\(O(nlog a_i)\)的.具体就是,每次操作都会有一个数a被b取 ...
- [题解] Atcoder Regular Contest ARC 151 A B C D E 题解
点我看题 昨天刚打的ARC,题目质量还是不错的. A - Equal Hamming Distances 对于一个位置i,如果\(S_i=T_i\),那么不管\(U\)的这个位置填什么,对到\(S\) ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 096
AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
- AtCoder Regular Contest 094
AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...
随机推荐
- 题解【AtCoder - CODE FESTIVAL 2017 qual B - D - 101 to 010】
题目:https://atcoder.jp/contests/code-festival-2017-qualb/tasks/code_festival_2017_qualb_d 题意:给一个 01 串 ...
- 鲜衣怒马散尽千金,Vue3.0+Tornado6前后端分离集成Web3.0之Metamask钱包区块链虚拟货币三方支付功能
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_219 不得不承认,大多数人并不拥有或者曾经拥有加密货币.是的,Web3.0.加密货币.区块链,对于大多数的互联网用户来说,其实是一 ...
- 新一代大数据任务调度系统 - Apache DolphinScheduler 1.3.4 发布,推荐下载
| 本文编辑:朱桐 新一代大数据任务调度 - Apache DolphinScheduler(incubator) 在经过社区 30 多位小伙伴的贡献与努力下于发布了 1.3.4 版本,1.3.4 作 ...
- Java集合容器的深度理解
Java容器里有很多写好的容器API,这使我们很方便的可以存储.操作我们的数据. 下面是我写的容器的特点,一些容器的不同之处,从底层源码解析一下容器实现原理 一.常用的容器目录 上图可以看出,java ...
- CF 559C - Gerald and Giant Chess (组合计数)
\(C_{x+y}^y\)的公式,DP容斥删多余贡献. #include <cstdio> #include <iostream> #include <cstring&g ...
- Luogu5019 铺设道路 (贪心)
水题,水得好无语 #include <iostream> #include <cstdio> #include <cstring> #include <alg ...
- 【NOI P模拟赛】校门外歪脖树上的鸽子(树链剖分)
题面 2 ≤ n ≤ 2 × 1 0 5 , 1 ≤ m ≤ 2 × 1 0 5 , 1 ≤ l ≤ r ≤ n , 1 ≤ d ≤ 1 0 8 2 ≤ n ≤ 2 × 10^5,1 ≤ m ≤ 2 ...
- 【java】学习路径32-绝对路径与相对路径
获取文件路径的时候,我们发现有两个方法,getAbsolutePath和getPath两个方法. 前者是获取绝对路径,后者是相对路径. 绝对路径指的是完整路径,从盘符开始. 相对路径指的是从java当 ...
- laravel框架中验证后在页面提示错误信息
{{-- 显示错误信息 判断:如果有错误则进行显示,--}} {{-- 通过$errors->any() 获取是否有错误,如果有则返回布尔值true,没有返回布尔值false--}} @if($ ...
- Android Kotlin Annotation Processer
Annotation Processer 注解处理器(Annotation Processer)是javac内置的注解处理工具,可以在编译时处理注解,让我们自己做相应的处理.比如生成重复度很高的代码, ...