链接:

https://vjudge.net/problem/UVALive-7040

题意:

Recently, Mr. Big recieved n owers from his fans. He wants to recolor those owers with m colors. The

owers are put in a line. It is not allowed to color any adjacent owers with the same color. Flowers i and

i + 1 are said to be adjacent for every i, 1 ≤ i < n. Mr. Big also wants the total number of different

colors of the n owers being exactly k.

Two ways are considered different if and only if there is at least one ower being colored with different

colors

思路:

先C(n, k),考虑k个有\(k * (k-1)^{n-1}\)。减掉少一个不选的有\((k-1)*(k-2)^{n-1}\)。

其中多减掉了两个不选的要加上。

最后:\(\sum_{i=1}^{k-1}(-1)^i*C_k^{k-i}*(k-i)*(k-i-1)^{n-1}\)

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector> using namespace std;
typedef long long LL;
const int INF = 1e9; const int MAXN = 1e6+10;
const int MOD = 1e9+7; LL n, m, k;
LL F[MAXN], Inv[MAXN], Finv[MAXN]; LL Pow(LL a, LL b)
{
LL res = 1;
while(b>0)
{
if (b&1)
res = res*a%MOD;
a = a*a%MOD;
b >>= 1;
}
return res;
} LL GetInv(int a)
{
return Pow(a, MOD-2);
} void Init()
{
Inv[1] = 1;
for (int i = 2;i < MAXN;i++)
Inv[i] = (MOD-MOD/i)*1LL*Inv[MOD%i]%MOD;
F[0] = Finv[0] = 1;
for (int i = 1;i < MAXN;i++)
{
F[i] = F[i-1]*1LL*i%MOD;
Finv[i] = Finv[i-1]*1LL*Inv[i]%MOD;
}
} LL Comb(int n, int m)
{
if (m < 0 || m > n)
return 0;
return F[n]*1LL*Finv[m]%MOD*Finv[n-m]%MOD;
} int main()
{
Init();
int t, cnt = 0;
scanf("%d", &t);
while(t--)
{
scanf("%lld%lld%lld", &n, &m, &k);
LL res = 1LL*k*Pow(k-1, n-1)%MOD;
int flag = -1;
for (int i = 1;i <= k-1;i++)
{
res = (res+1LL*flag*Comb(k, k-i)*(k-i)%MOD*Pow(k-i-1, n-1)%MOD)%MOD;
flag = -flag;
}
LL temp = Finv[k];
for (int i = 1;i <= k;i++)
{
temp = 1LL*temp*(m-k+i)%MOD;
}
res = ((1LL*res*temp)%MOD+MOD)%MOD;
printf("Case #%d: %lld\n", ++cnt, res);
} return 0;
}

UVALive-7040-Color(容斥原理)的更多相关文章

  1. UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)

    题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m ...

  2. 组合数+容斥原理 UVALive 7040 Color(14西安F)

    题目传送门 题意:n盆花涂色,相邻不能涂相同的颜色,从m中颜色选取k种颜色涂,保证正好有k种颜色 分析:从m中颜色选取k种就是C (m, k),然后第一个有k种选择,之后的都有k-1种选择,这样是不超 ...

  3. UVALive 7040 Color

    题目链接:LA-7040 题意为用m种颜色给n个格子染色.问正好使用k种颜色的方案有多少. 首先很容易想到的是\( k * (k-1)^{n-1}\),这个算出来的是使用小于等于k种颜色给n个方格染色 ...

  4. UVALive 4025 Color Squares(BFS)

    题目链接:UVALive 4025 Color Squares 按题意要求放带有颜色的块,求达到w分的最少步数. //yy:哇,看别人存下整个棋盘的状态来做,我什么都不想说了,不知道下午自己写了些什么 ...

  5. ACM数论之旅13---容斥原理(一切都是命运石之门的选择(=゚ω゚)ノ)

    容斥原理我初中就听老师说过了,不知道你们有没有听过(/≧▽≦)/ 百度百科说: 在计数时,必须注意没有重复,没有遗漏. 为了使重叠部分不被重复计算,人们研究出一种新的计数方法. 这种方法的基本思想是: ...

  6. ACM数论之旅17---反演定理 第一回 二项式反演(神说要有光 于是就有了光(´・ω・`))

    终于讲到反演定理了,反演定理这种东西记一下公式就好了,反正我是证明不出来的~(-o ̄▽ ̄)-o 首先,著名的反演公式 我先简单的写一下o( ̄ヘ ̄*o) 比如下面这个公式 f(n) = g(1) + g ...

  7. 2019.02.09 codeforces gym 100548F. Color(容斥原理)

    传送门 题意简述:对n个排成一排的物品涂色,有m种颜色可选. 要求相邻的物品颜色不相同,且总共恰好有K种颜色,问所有可行的方案数.(n,m≤1e9,k≤1e6n,m\le1e9,k\le1e6n,m≤ ...

  8. Gym 100548F Color 2014-2015 ACM-ICPC, Asia Xian Regional Contest (容斥原理+大数取模)

    题意:有N朵花,在M种颜色中选择恰好k种不同的颜色,将这N朵花染色,要求相邻的两朵花颜色不相同. 分析:若限制改为选择不超过k种颜色将N朵花朵染色,则方案数\(f(N,k) = k*(k-1)^{N- ...

  9. Gym 100548F Color (数论容斥原理+组合数)

    题意:给定 m 种颜色,把 n 盆花排成一直线的花涂色.要求相邻花的颜色不相同,且使用的颜色恰好是k种.问一共有几种涂色方法. 析:首先是先从 m 种颜色中选出 k 种颜色,然后下面用的容斥原理,当时 ...

  10. 2014ACM/ICPC亚洲区西安站 F题 color (组合数学,容斥原理)

    题目链接:传送门 题意: n个格子排成一行.我们有m种颜色.能够给这些格子涂色,保证相邻的格子的颜色不同 问,最后恰好使用了k种颜色的方案数. 分析: 看完题目描写叙述之后立刻想到了一个公式 :C(m ...

随机推荐

  1. Java:session中的invalidate()的作用是什么呢?求解

    手工杀会话.会话失效有2种可能:超时和手工杀会话.手工杀方便省时间,程序员都爱用. 比如我做一个程序需要登录,中间访问的页面有会话控制,如果没有登录则跳转到登录页面,退出时清会话信息. 这是有两个选择 ...

  2. 利用Python进行数据分析 第6章 数据加载、存储与文件格式(2)

    6.2 二进制数据格式 实现数据的高效二进制格式存储最简单的办法之一,是使用Python内置的pickle序列化. pandas对象都有一个用于将数据以pickle格式保存到磁盘上的to_pickle ...

  3. C++枚举类型教案

    一.枚举类型的应用场景 只需要将需要的变量值一一列举出来,便构成一个枚举类型. 二.枚举类型的定义 ·定义方式: enum 枚举类型名字{枚举常量表}: ·关键字enum:说明接下来定义的是一个枚举类 ...

  4. Python学习路线2019升级版(课程大纲+视频教程+网盘资源下载)

    2019最新Python全栈+人工智能学习路线升级版 全面涵盖前端.后端.爬虫.数据挖掘.人工智能等课程(课程大纲+视频教程+网盘资源下载)! 学习路线四大亮点: 1.人工智能三大主流框架全覆盖 2. ...

  5. golang开发:(一)开发环境搭建vagrant+VirtualBox

    开发环境介绍 不管何种开发语言,目前用的比较多的开发环境基本就是Vagrant+VirtualBox搭建的虚拟开发环境,这种开发环境的好处就是一次搭建处处可用,各个平台和系统都可以使用.开发团队中,可 ...

  6. dotnet Core 图片验证码

    9102年了,.NET Core 2.x已经稳定,但是还是有很多人搞不定.NET Core的图片验证码. 下面说重点 1.引用Nuget包:System.Drawing.Common 2.像NET F ...

  7. Scratch 少儿编程之旅(四)— Scratch入门动画《小猫捉蝴蝶》(中)

    本期内容概括: 了解Scratch的更多操作,用[无限循环]来更改“小猫”角色的代码: 添加[碰到边缘就反弹]积木块指令: 更改角色的旋转模式和造型,让”小猫”走路更生动: 两种[循环]语句的区别: ...

  8. ArcGIS Server Identify结果属性 AliasName

    最近做地图服务相关工作,一般在数据库中,字段名有好多限制,而实际工作中,需要显示的经常有一些较长的字段或者包含单位等特殊符号. 为了方便属性的操作,将属性字段名改为英文,AliasName中保存了属性 ...

  9. Web Services使用SOAP Header

    在Web Services方法进行通信使用SOAP遵循标准的SOAP格式,该格式的一部分是在XML文档中编码的数据.XML文档包含一个Envelope根元素(由必需的Body元素和可选的Header元 ...

  10. Django中生成随机验证码(pillow模块的使用)

    Django中生成随机验证码 1.html中a标签的设置 <img src="/get_validcode_img/" alt=""> 2.view ...