最大熵马尔科夫模型(MEMM)及其标签偏置问题
定义:
MEMM是这样的一个概率模型,即在给定的观察状态和前一状态的条件下,出现当前状态的概率。
Ø S表示状态的有限集合
Ø O表示观察序列集合
Ø Pr(s|s’,o):观察和状态转移概率矩阵
Ø 初始状态分布:Pr0(s)
注:O表示观察集合,S表示状态集合,M表示模型
最大熵马尔科夫模型(MEMM)的缺点:
看下图,由观察状态O和隐藏状态S找到最有可能的S序列:
路径s1-s1-s1-s1的概率:0.4*0.45*0.5=0.09
路径s2-s2-s2-s2的概率: 0.2*0.3*0.3=0.018
路径s1-s2-s1-s2的概率: 0.6*0.2*0.5=0.06
路径s1-s1-s2-s2的概率: 0.4*0.55*0.3=0.066
由此可得最优路径为s1-s1-s1-s1
实际上,在上图中,状态1偏向于转移到状态2,而状态2总倾向于停留在状态2,这就是所谓的标注偏置问题,由于分支数不同,概率的分布不均衡,导致状态的转移存在不公平的情况。
由上面的两幅图可知,最大熵隐马尔科夫模型(MEMM)只能达到局部最优解,而不能达到全局最优解,因此MEMM虽然解决了HMM输出独立性假设的问题,但却存在标注偏置问题。
最大熵马尔科夫模型(MEMM)及其标签偏置问题的更多相关文章
- 标记偏置 隐马尔科夫 最大熵马尔科夫 HMM MEMM
隐马尔科夫模型(HMM): 图1. 隐马尔科夫模型 隐马尔科夫模型的缺点: 1.HMM仅仅依赖于每个状态和它相应的观察对象: 序列标注问题不仅和单个词相关,并且和观察序列的长度,单词的上下文,等等相关 ...
- 【中文分词】最大熵马尔可夫模型MEMM
Xue & Shen '2003 [2]用两种序列标注模型--MEMM (Maximum Entropy Markov Model)与CRF (Conditional Random Field ...
- 隐马尔科夫模型python实现简单拼音输入法
在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此 ...
- HMM基本原理及其实现(隐马尔科夫模型)
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态 ...
- 基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matchi ...
- 隐马尔科夫模型HMM学习最佳范例
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...
- HMM 自学教程(四)隐马尔科夫模型
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...
- HMM隐马尔科夫模型
这是一个非常重要的模型,凡是学统计学.机器学习.数据挖掘的人都应该彻底搞懂. python包: hmmlearn 0.2.0 https://github.com/hmmlearn/hmmlearn ...
- 隐马尔科夫模型(HMM)的概念
定义隐马尔科夫模型可以用一个三元组(π,A,B)来定义:π 表示初始状态概率的向量A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率B =(bij) ...
随机推荐
- js 密码为空显示错误
<script> var user = document.getElementById("user"); var pwd = document.getElementBy ...
- PHP四种基本排序
1. 冒泡排序 // 1.冒泡排序法 $array = [12,3,23,2,4,1,0]; function maoPao($arr){ //先判断是不是空数组 if(!empty($arr)){ ...
- c++几个通用工具
Pairs(对组) 1.class pair可以将两个值视为一个单元,C++标准程序库内多处使用这个class.尤其容器类别map和multimap,就是使用pairs来管理其键值/实值(key/va ...
- 图论小专题A
大意失荆州.今天考试一到可以用Dijkstra水过的题目我竟然没有做出来,这说明基础还是相当重要.考虑到我连Tarjan算法都不太记得了,我决定再过一遍蓝皮书,对图论做一个小的总结.图论这个部分可能会 ...
- webpack官方文档分析(一):安装
一:安装 1.首先要安装Node.js->node.js下载 2.本地安装 要安装最新版本或特定版本,运行如下: npm install --save-dev webpack npm insta ...
- 项目部署中,tomcat报java.lang.OutOfMemoryError: PermGen space
原因: PermGen space的全称是Permanent Generation space,是指内存的永久保存区域,这块内存主要是被JVM存放Class和Meta信息的,Class在被Loader ...
- 推荐系统系列(三):FNN理论与实践
背景 在FM之后出现了很多基于FM的升级改造工作,由于计算复杂度等原因,FM通常只对特征进行二阶交叉.当面对海量高度稀疏的用户行为反馈数据时,二阶交叉往往是不够的,三阶.四阶甚至更高阶的组合交叉能够进 ...
- D. Eternal Victory(dfs + 思维)
D. Eternal Victory time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Laydate 使用注意事项
1.laydate 切记不能放在laytpl 模板语法中使用,否则可能会导致无法触发的情况 不在laytpl中使用 <div class="layui-form-item"& ...
- Linux 变量 $$ $! $? $- $# $* $@ $0 $n
[参考文章]:linux中shell变量$#,$@,$0,$1,$2的含义解释 1. 变量说明 1.1 $$ Shell本身的PID(ProcessID) 1.2 $! Shell最后运行的后台Pro ...