1、知识点

"""
1、基础知识:
1、神经网络结构:1、输入层 2、隐含层 3、全连接层(类别个数=全连接层神经元个数)+softmax函数 4、输出层
2、逻辑回归:只能解决二分类问题
3、线性回归:只能用于预测
4、softmax:有多少类别,就会有多少个输出
5、信息熵:信息熵越大,不确定性越大,信息熵越小,则不确定小,属于的类别也更加清晰
6、softmax公式: Si = e^i / (e^1+....+e^j) ,用于计算概率值。 特点:所有类别概率值相加等于1
7、损失函数:交叉熵损失 ,一个样本就有一个交叉熵损失。公式: H(y) = -y'log y(i)对i的求和值,其中y'为真实结果,y(i)为预测结果,一 2、感知机:有n个输入数据,通过权重与各数据之间的计算和,比较激活函数结果,得出输出
应用场景:很容易解决与、或、非问题,即二分类问题 3、神经网络的种类:
1、基础神经网络:单层感知器,线性神经网络,BP神经网络,Hopfield神经网络等
2、进阶神经网络:玻尔兹曼机,受限玻尔兹曼机,递归神经网络等
3、深度神经网络:深度置信网络,卷积神经网络,循环神经网络,LSTM网络等 4、神经网络特点:
1、输入向量的维度和输入神经元的个数相同
2、每个连接都有个权值
3、同一层神经元之间没有连接
4、由输入层,隐层,输出层组成
5、第N层与第N-1层的所有神经元连接,也叫全连接 5、神经网络API模块:
1、tf.nn:提供神经网络相关操作的支持,包括卷积操作(conv)、池化操作(pooling)、归一化、loss、分类操作、embedding、RNN、Evaluation.
2、tf.layers:主要提供的高层的神经网络,主要和卷积相关的,对tf.nn进一步封装。
3、tf.contrib:tf.contrib.layers提供将计算图中的网络层、正则化、摘要操作,是构建计算图的高级操作,但是tf.contrib包不稳定以及一些实验代码 算法对比总结:
算法 策略 优化
线性回归 均方误差 梯度下降 预测
逻辑回归 对数似然损失 梯度下降 二分类
神经网络 交叉熵损失 反响传播算法(就是梯度下降算法) 单层(全连接层)实现手写数字识别:
1、定义数据占位符,针对特征值和目标值矩阵
特征值[None,784] 目标值[None,10]
2、建立模型
随机初始化权重和偏置 y_predict = tf.matmul(x,w)+b
3、计算损失
loss平均样本损失(交叉熵损失)
4、梯度下降优化(梯度下降算法)
"""

2、代码

# coding = utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("IS_TRAIN",1,"指定程序是预测还是训练")
def fullconnnected():
"""
全连接层
:return: """
#获取数据
minist = input_data.read_data_sets("./data/mnist/input_data/", one_hot=True) # 1、建立数据占位符 x[None,784] y_true[None,10]
with tf.variable_scope("data"):
x = tf.placeholder(tf.float32,[None,784])
y_true = tf.placeholder(tf.int32,[None,10])
#2、建立一个全连接层的神经网络
with tf.variable_scope("fc_model"):
#随机初始化权重和偏置
weight = tf.Variable(tf.random_normal([784,10],mean=0.0,stddev=1.0),name="w")
bias = tf.Variable(tf.constant(0.0,shape=[10])) #预测None个样本的输出结果
y_predict = tf.matmul(x,weight)+bias #3、计算交叉熵损失
with tf.variable_scope("cross_entropy"):
#求取平均交叉熵损失
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=y_predict)) #4、梯度下降求出损失
with tf.variable_scope("optimizer"):
train_op = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #5、计算准确率
with tf.variable_scope("accuracy"):
equal_list = tf.equal(tf.argmax(y_true,1),tf.argmax(y_predict,1))
#equal_list None个样本 [1,0,1,1,0,0,0......]
accuracy = tf.reduce_mean(tf.cast(equal_list,tf.float32)) #6、收集变量
tf.summary.scalar("losses",loss)
tf.summary.scalar("acc",accuracy)
tf.summary.histogram("weights",weight)
tf.summary.histogram("baises",bias)
merge = tf.summary.merge_all() #7、初始化变量
init_op = tf.global_variables_initializer() #8、创建一个Saver
saver = tf.train.Saver() #9、开启会话进行训练
with tf.Session() as sess:
#初始化变量
sess.run(init_op)
fileWriter = tf.summary.FileWriter("./event/",graph=sess.graph) if FLAGS.IS_TRAIN == 1:
#迭代步数训练,更新参数预测
for i in range(2000):
#取出数据的特征自和目标值
mnist_x,mnist_y =minist.train.next_batch(50)
#训练
sess.run(train_op,feed_dict={x: mnist_x, y_true:mnist_y})
summary = sess.run(merge,feed_dict={x: mnist_x, y_true:mnist_y})
fileWriter.add_summary(summary,i)
print("训练第%d步,准确率为:%f" %(i,sess.run(accuracy,feed_dict={x: mnist_x, y_true:mnist_y})) )
#保存模型
saver.save(sess,"./ckpt/fc_model")
else:
#如果是0,那么做预测
for i in range(10):
saver.restore(sess,"./ckpt/fc_model")
#每次测试一张图片
x_test,y_test = minist.test.next_batch(1)
print("第%d张图片,手写数字是%d,,预测结果是%d" %(
i,
tf.argmax(y_test,1).eval(),
tf.argmax(sess.run(y_predict,feed_dict={x: x_test, y_true:y_test}),1).eval()
))
return None if __name__ == '__main__':
"测试:python 简单神经网络介绍.py --IS_TRAIN=0"
#默认训练
fullconnnected()
pass

tensorflow神经网络与单层手写字识别的更多相关文章

  1. 用TensorFlow教你手写字识别

    博主原文链接:用TensorFlow教你做手写字识别(准确率94.09%) 如需转载,请备注出处及链接,谢谢. 2012 年,Alex Krizhevsky, Geoff Hinton, and Il ...

  2. 10分钟搞懂Tensorflow 逻辑回归实现手写识别

    1. Tensorflow 逻辑回归实现手写识别 1.1. 逻辑回归原理 1.1.1. 逻辑回归 1.1.2. 损失函数 1.2. 实例:手写识别系统 1.1. 逻辑回归原理 1.1.1. 逻辑回归 ...

  3. knn算法手写字识别案例

    import pandas as pd import numpy as np import matplotlib.pyplot as plt import os from sklearn.neighb ...

  4. tensorflow卷积神经网络与手写字识别

    1.知识点 """ 基础知识: 1.神经网络(neural networks)的基本组成包括输入层.隐藏层.输出层.而卷积神经网络的特点在于隐藏层分为卷积层和池化层(po ...

  5. Tensorflow之基于MNIST手写识别的入门介绍

    Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介 ...

  6. [纯C#实现]基于BP神经网络的中文手写识别算法

    效果展示 这不是OCR,有些人可能会觉得这东西会和OCR一样,直接进行整个字的识别就行,然而并不是. OCR是2维像素矩阵的像素数据.而手写识别不一样,手写可以把用户写字的笔画时间顺序,抽象成一个维度 ...

  7. 46、tensorflow入门初步,手写识别0,1,2,3,4,5,6

    1.使用tensorflow的SoftMax函数,对手写数字进行识别 Administrator@SuperComputer MINGW64 ~ $ docker run -it -p 8888:88 ...

  8. 基于PyTorch实现MNIST手写字识别

    本篇不涉及模型原理,只是分享下代码.想要了解模型原理的可以去看网上很多大牛的博客. 目前代码实现了CNN和LSTM两个网络,整个代码分为四部分: Config:项目中涉及的参数: CNN:卷积神经网络 ...

  9. 8.CNN应用于手写字识别

    import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.mode ...

随机推荐

  1. apache启动错误 AH00072: make_sock: could not bind to address [::]:443 windows系统端口/进程查看

    1. netstat -ano|findstr " 2. tasklist|findstr "

  2. Hadoop_03_Hadoop分布式集群搭建

    一:Hadoop集群简介: Hadoop 集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起: HDFS集群:负责海量数据的存储,集群中的角色主要有: NameNo ...

  3. Spiral and Zigzag

    [LeetCode] 虽然感觉spiral matrix 两道题和 zigzag conversion 那道题没有太多联系,但是,毕竟都是相当于数学上的找规律题目. 这种优雅的题目就应该用下面这种优雅 ...

  4. 2019.9.29 FlutterToast使用

    引入 fluttertoast: ^ 增加头文件 import 'package:fluttertoast/fluttertoast.dart'; 样式 1 Fluttertoast.showToas ...

  5. CF875F Royal Questions[最大生成基环树森林]

    这题这场比赛一堆人秒切..果然还是我太菜了吗 题意:二分图,右边$m$个点每个点$i$向左边有且仅有两条连边,边权都是$a_i$.求最大匹配. 一个朴素思想,二分图匹配,用贪心带匈牙利搞一搞,但是复杂 ...

  6. luogu4366 [Code+#4]最短路[优化建边最短路]

    显然这里的$n^2$级别的边数不能全建出来,于是盯住xor这个关键点去 瞎猜 探究有没有什么特殊性质可以使得一些边没有必要建出来. 发现一个点经过一次xor $x$,花费$x$这么多代价(先不看$C$ ...

  7. Autoprefixer:一个以最好的方式处理浏览器前缀的后处理程序

    Autoprefixer解析CSS文件并且添加浏览器前缀到CSS规则里,使用Can I Use的数据来决定哪些前缀是需要的.   所有你需要做的就是把它添加到你的资源构建工具(例如 Grunt)并且可 ...

  8. java 获取随机数的方法

    方法一: (数据类型)(最小值 + Math.random()*(最大值-最小值+1) ); 示例: (int)(1+Math.random()*(10-1+1)): 获取int类型 1-10的随机数 ...

  9. 【JDK】MacBook 安装JDK及卸载步骤

    一.安装步骤 1.官网下载jdk https://www.oracle.com/technetwork/java/javase/downloads/index.html 勾选   Accept Lic ...

  10. join on 和group

                       左边的表是article文章表,右边的是comment文章回复表. 今天mysql查询的时候,遇到了有趣的事,任务是查询数据库需要得到以下格式的文章标题列表,并按 ...