python从入门到放弃之Tensorflow(一)
Tensorflow使用错误集锦:
错误1 :
FutureWarning: Conversion of the second argument of issubdtype from ‘float’ to ‘np.floating’ is dep
解决办法:命令行进入python文件下对numpy进行降级
错误2:
module 'tensorflow' has no attribute 'xxx'
解决办法:一般而言是由于TensorFlow新版本修改了许多函数的名字,可能的情况如下:
tf.sub()改为tf.subtract()
tf.mul()改为tf.multiply()
tf.types.float32改为tf.float32
tf.pact()改为tf.stact()
tf.initialize_all_variables()改为tf.global_variables_initializer()
错误3:
initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.Instructions for updating:
解决办法:initialize_all_variables已被弃用,将在2017-03-02之后删除。
所以我们把tf.initialize_all_variables()改为tf.global_variables_initializer()就可以了
错误4 :
Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
是说你电脑cpu支持AVX(Advanced Vector Extensions),运算速度可以提升。这个警告是可以忽略的
解决办法:在开头加上下面两行代码
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = ''
1.什么是张量(Tensor)?
张量:多重线性函数。张量同时描述N个属性,将属性写在一块,每个属性有多个自由度。
简单理解:回顾一下我们以前学过向量和矩阵,向量是一维的,矩阵是二维的,我们将张量视为这些的泛化。即rank=0时是标量,rank=1时是向量,rank=2时是矩阵,当rank>=2之后,没有名称,我们将它叫做rank N Tensor
物理角度:“在不同坐标系下都保持不变的物理量”
2.Constant assign
state = tf.Variable(0, name="counter") # 创建一个op,其作用是使`state`增加1
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value) # 启动图后,变量必须先经过init op初始化
# 首先先增加一个初始化op到图中
init_op = tf.initialize_all_variables() # 启动图
with tf.Session() as sess:
# 运行init op
sess.run(init_op)
# 打印 state 的初始值
print (sess.run(state))
# 运行op, 更新state 并打印
for _ in range(3):
sess.run(update)
print (sess.run(state))
3.Reduce_mean
在tensor的某一维度上求值。即沿着张量不同的数轴进行计算平均值
求最大值tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None)
求平均值tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)
参数:
input_tensor:待求值的tensor,,被计算的张量,确保为数字类型。
reduction_indices或者axis: 方向数轴,如果没有指明,默认是所有数轴都减小为1。
keep_dims: 如果定义true, 则保留维数,但数量个数为0.
name: 操作过程的名称。
返回值:降低维数的平均值。
tf.reduce_mean(x)表示计算全局平均值;
tf.reduce_mean(x, axis=0)表示计算y轴平均值;
tf.reduce_mean(x, axis=1)表示计算x轴平均值;
4.定义图变量的两种方法Variable
tf.variable
在tensorflow中,创建的这些对象,必须要经过初始化才能使用。最简单直接的初始化所有变量的方法:
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
示例如下:
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt; a1 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a1')
a2 = tf.Variable(tf.constant(1), name='a2')
a3 = tf.Variable(tf.ones(shape=[2,3]), name='a3') with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print sess.run(a1)
print sess.run(a2)
print sess.run(a3)
tf.get_variable
import tensorflow as tf
init = tf.constant_initializer([5])
x = tf.get_variable('x', shape=[1], initializer=init)
sess = tf.InteractiveSession()
sess.run(x.initializer)
sess.run(x
运行会话
#coding=utf-8
import numpy as np
from numpy import *
# import matplotlib.pyplot as plt
import tensorflow as tf
# 创建一个变量,初始为标量0
state = tf.Variable(0, name="counter")
# 创建一个op,其作用是使`state`增加1
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)
# 启动图后,变量必须先经过init op初始化
# 首先先增加一个初始化op到图中
init_op = tf.initialize_all_variables()
# 启动图
with tf.Session() as sess:
# 运行init op
sess.run(init_op)
# 打印 state 的初始值
print (sess.run(state))
# 运行op, 更新state 并打印
for _ in range(3):
sess.run(update)
print (sess.run(state))
输出:
5.placeholder以及数据训练过程
tf.GradientDescentOptimizer(learning_rate).minimize(Loss)
x、y组成的实际数据输入再提供给输入
python从入门到放弃之Tensorflow(一)的更多相关文章
- [Python 从入门到放弃] 6. 文件与异常(二)
本章所用test.txt文件可以在( [Python 从入门到放弃] 6. 文件与异常(一))找到并自行创建 现在有个需求,对test.txt中的文本内容进行修改: (1)将期间的‘:’改为‘ sai ...
- [Python 从入门到放弃] 1. 列表的基本操作
''' 列表 Create By 阅后即焚 On 2018.1.29 ''' 1. 列表的定义 列表看起来好像其它编程语言中的数组,但列表具备更加强大的功能,它是Python完备的集合对象,现在,你可 ...
- Python从入门到放弃系列(Django/Flask/爬虫)
第一篇 Django从入门到放弃 第二篇 Flask 第二篇 爬虫
- Python从入门到放弃
计算机基础 01 计算机基础之编程 02 计算机组成原理 03 计算机操作系统 04 编程语言分类 Python解释器 05 Python和Python解释器 06 执行Python程序的两种方式 0 ...
- [Python 从入门到放弃] 5. 文件与异常(一)
1.文件操作: 文件操作包含读/写 从文件中读取数据 向文件写入数据 Python中内置了open()方法用于文件操作 (更多关于open()BIF介绍 阅读此篇) 基本模板: 1.获取文件对象 2. ...
- [Python 从入门到放弃] 4. 什么是可选参数
参数在函数中使用,顾名思义.可选参数就是:这个参数是可选的 也就是可有可无 我们来看一下这个例子: ver 1: 1.定义一个迭代输出列表元素的函数myPrint 2.参数为 列表 def myPri ...
- [Python 从入门到放弃] 3. BIF(内建函数)
BIF (built-in functions) Python中提供了70多个内建函数,具备大量的现成功能. BIF不需要专门导入,可以直接使用,拿来就用 1.print() # 在屏幕上打印输出 如 ...
- python从入门到放弃之进程
在理解进程之前我们先了解一下什么是进程的概念吧 以下就是我总结的一些基本的进程概念 进程就是正在运行的程序,它是操作系统中,资源分配的最小单位(通俗易懂点也就是电脑给程序分配的一定内存操作空间).资源 ...
- python从入门到放弃之anconada真愁人
原先未使用anconada,用的python2.7,每次install各种包各种问题真的心累 后来装了anconada,安装了python3.6 使用起来比较方便了. 陆续将遇到的问题更新如下~ 一 ...
随机推荐
- Redis汇总
开源项目 https://www.cnblogs.com/yswenli/p/9460527.html
- CCPC 2017 哈尔滨 D. X-Men && HDU 6233(思维+期望)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6233 题意:一个树上有m个人,每个人在某个节点上,每个时刻每个人可以和一个与他距离大于 1 的点进行交 ...
- spring注解@Import和@ImportResource
@Import只负责引入javaCOnfig形式定义的Ioc容器配置,等同于<import resource="xxx.xml"/>将一个配置文件导入另一个 @Conf ...
- C sizeof函数
#include<stdio.h> int main() { struct stu { union { ]; ]; } cls; ]; float cj; } xc; printf(&qu ...
- 实体类,bean文件,pojo文件夹,model文件夹都一样
实体类,bean文件,pojo文件夹,model文件夹都一样,这些都是编写实体类,这是我暂时看到的项目文件
- 2018CCPC桂林站G Greatest Common Divisor
题目描述 There is an array of length n, containing only positive numbers.Now you can add all numbers by ...
- DP基础(线性DP)总结
DP基础(线性DP)总结 前言:虽然确实有点基础......但凡事得脚踏实地地做,基础不牢,地动山摇,,,嗯! LIS(最长上升子序列) dp方程:dp[i]=max{dp[j]+1,a[j]< ...
- 【CUDA 基础】5.4 合并的全局内存访问
title: [CUDA 基础]5.4 合并的全局内存访问 categories: - CUDA - Freshman tags: - 合并 - 转置 toc: true date: 2018-06- ...
- 集合家族——Vector
一.vector简介 Vector 可以实现可增长的对象数组.与数组一样,它包含可以使用整数索引进行访问的组件.不过,Vector 的大小是可以增加或者减小的,以便适应创建 Vector 后进行添加或 ...
- oracle面试题1
1.题目要求 已知关系模式:S (SNO,SNAME)学生关系.SNO 为学号,SNAME 为姓名C (CNO,CNAME,CTEACHER)课程关系.CNO 为课程号,CNAME 为课程名,CTEA ...