题目描述:

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

解法一:暴力解法

首先应该想到用“暴力解法”做,遍历所有的子区间

这里要注意一些边界条件,等于不等于需要仔细考虑。如下:

变量 i 表示结尾的那个索引;
变量 j 表示从索引 0 依次向前走;
通过双层循环,可以穷举所有的子区间,然后再对子区间内的所有元素求和。因此时间复杂度是立方级别的。

代码实现:

public class Solution {

    public int maxSubArray(int[] nums) {
int len = nums.length;
int res = Integer.MIN_VALUE;
for (int i = 0; i < len; i++) {
for (int j = 0; j <= i; j++) {
int sum = sumOfSubArray(nums, j, i);
res = Math.max(res, sum);
}
}
return res;
} private int sumOfSubArray(int[] nums, int left, int right) {
// 子区间的和
int res = 0;
for (int i = left; i <= right; i++) {
res += nums[i];
}
return res;
} }

复杂度分析:

  • 时间复杂度:O(N^3),这里 NN 为数组的长度。
  • 空间复杂度:O(1)。

解法二:动态规划

题目解析:

的是首先对数组进行遍历,当前最大连续子序列和为 sum,结果为 ans
如果 sum > 0,则说明 sum 对结果有增益效果,则 sum 保留并加上当前遍历数字
如果 sum <= 0,则说明 sum 对结果无增益效果,需要舍弃,则 sum 直接更新为当前遍历数字
每次比较 sum 和 ans的大小,将最大值置为ans,遍历结束返回结果

代码实现:

package com.company;

/**
* @author yaoshw
*/
public class Main { public static void main(String[] args) { int[] nums = new int[]{-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println(maxSubArray(nums));
} public static int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) {
return Integer.MAX_VALUE;
}
//记录最大值
int maxSum = nums[0];
int curSum = 0;
for (int i = 0; i < nums.length; i++) {
if(curSum>=0) {
curSum = curSum + nums[i];
} else {
curSum = nums[i];
}
maxSum = Math.max(curSum, maxSum);
}
return maxSum;
} }

时间复杂度:O(n)

进阶解法:分治法

思路解析:

最大子序和要么在左半边,要么在右半边,要么是穿过中间,对于左右边的序列,情况也是一样,因此可以用递归处理。中间部分的则可以直接计算出来

代码实现:

public class Solution {

    public int maxSubArray(int[] nums) {
int len = nums.length;
if (len == 0) {
return 0;
}
return maxSubArraySum(nums, 0, len - 1);
} private int maxCrossingSum(int[] nums, int left, int mid, int right) {
// 一定会包含 nums[mid] 这个元素
int sum = 0;
int leftSum = Integer.MIN_VALUE;
// 左半边包含 nums[mid] 元素,最多可以到什么地方
// 走到最边界,看看最值是什么
// 计算以 mid 结尾的最大的子数组的和
for (int i = mid; i >= left; i--) {
sum += nums[i];
if (sum > leftSum) {
leftSum = sum;
}
}
sum = 0;
int rightSum = Integer.MIN_VALUE;
// 右半边不包含 nums[mid] 元素,最多可以到什么地方
// 计算以 mid+1 开始的最大的子数组的和
for (int i = mid + 1; i <= right; i++) {
sum += nums[i];
if (sum > rightSum) {
rightSum = sum;
}
}
return leftSum + rightSum; } private int maxSubArraySum(int[] nums, int left, int right) {
if (left == right) {
return nums[left];
}
int mid = (left + right) >>> 1;
return max3(maxSubArraySum(nums, left, mid),
maxSubArraySum(nums, mid + 1, right),
maxCrossingSum(nums, left, mid, right));
} private int max3(int num1, int num2, int num3) {
return Math.max(num1, Math.max(num2, num3));
}
}

时间复杂度: O(nlogn)

Leetcode题目53.最大子序和(动态规划-简单)的更多相关文章

  1. leetcode之53.最大子序和

    题目详情 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: ...

  2. 【LeetCode】53.最大子序和

    最大子序和 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: ...

  3. Leetcode之动态规划(DP)专题-53. 最大子序和(Maximum Subarray)

    Leetcode之动态规划(DP)专题-53. 最大子序和(Maximum Subarray) 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. ...

  4. LeetCode 53. 最大子序和(Maximum Subarray)

    53. 最大子序和 53. Maximum Subarray 题目描述 给定一个整数数组 nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. LeetCode53. M ...

  5. Java实现 LeetCode 53 最大子序和

    53. 最大子序和 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 ...

  6. leetcode 120. 三角形最小路径和 及 53. 最大子序和

    三角形最小路径和 问题描述 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...

  7. 53. 最大子序和(剑指 Offer 42)

    53. 最大子序和(剑指 Offer 42) 知识点:数组:前缀和:哨兵:动态规划:贪心:分治: 题目描述 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组.求所有子数组的和的最大值. 要求 ...

  8. 1. 线性DP 53. 最大子序和.

    53. 最大子序和. https://leetcode-cn.com/problems/maximum-subarray/ func maxSubArray(nums []int) int { dp ...

  9. Leetcode——53.最大子序和

    @author: ZZQ @software: PyCharm @file: leetcode53_最大子序和.py @time: 2018/11/26 12:39 要求:给定一个整数数组 nums ...

随机推荐

  1. MVC授权不通过之后不执行任何自定义ActionFilter

    如下一个Action [Authorize] [F1]//自定义过滤器,继承自ActionFilter public ActionResult Index() { return View(); } 如 ...

  2. iview-admin部署linux nginx报500错误的问题记录

    遇到个新服务器部署iview-admin之后 在nginx配置文件有个user配置项 这里需要配置为root或者可以读取本地文件的用户 站点配置如下 server { listen ; server_ ...

  3. Tomat服务器学习

    Tomat服务器学习 使用的是Redhat版本的Tomcat 目录结构 bin:可执行文件 conf:配置文件 lib:tomcat运行时依赖的jar包 logs:日志文件 temp:临时文件 web ...

  4. MySQL时间类型及获取、展示处理

    MySQL时间格式 mysql所支持的日期时间类型有:DATETIME. TIMESTAMP.DATE.TIME.YEAR. 几种类型比较如下: 日期时间类型 占用空间 日期格式 最小值 最大值 零值 ...

  5. Django—views系统:views基础

    Django的View(视图)简介 一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错 ...

  6. python 之禅 又名 蛇宗三字经

    打开cmd 输入python回车 import this Beautiful is better than ugly. Explicit is better than implicit. Simple ...

  7. 十七,k8s集群指标API及自定义API

    目录 资源指标: Metrics-Server 资源指标: Metric-Server介绍 Metric-Server部署 下载yaml文件 因为有墙, 所以提前下载image镜像, 当然也可以手动修 ...

  8. CentOS7 基于 subversion 配置 SVN server

    由于 Window Server 环境下,VisualSVN Server Community 版本只支持 15 个同时在线用户,所以彻底放弃 Windows Server,在 Linux Serve ...

  9. 【小知识】证明 $1$ 到 $n$ 的立方和公式

    scb 发明了小学奥数(确信) Formula \(\sum\limits_{i=1}^n i^3 = (\sum\limits_{i=1}^n i)^2\) Provement 构造一个矩阵 \(a ...

  10. C++ 内存泄露和内存越界

    内存泄露:分配了内存而没有释放,逐渐耗尽内存资源,导致系统崩溃内存越界: 打个比方 就是你有一个500ml的水瓶,然后你倒在瓶里的水大于500ml 那个多余的就会流出来... 1. 原理分析经常有些新 ...