思路

并查集的好题

考虑到求满足条件限制的方案数,显然观察样例可知结果就是2^x,x是互不影响的边的集合数量

然后考虑如何求互不影响的边的集合数量

可以使用并查集,用i和i+n表示这个点的父亲连向它的边的两种指向,然后每次合并,u->lca,v->lca,如果lca不是u或v,合并u+n和v,v+n和u即可

为了保证复杂度,需要路径压缩一下

但是要注意这样的话,合并u+n和v,v+n和u必须在后面进行,不然会破坏树的结构

最后答案是\(2^{x}\),x是并查集个数/2

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int v[600400],fir[300400],nxt[600400],cnt;
void addedge(int ui,int vi){
++cnt;
v[cnt]=vi;
nxt[cnt]=fir[ui];
fir[ui]=cnt;
}
int jump[300400][20],dep[300400];
void dfs(int u,int f){
jump[u][0]=f;
dep[u]=dep[f]+1;
for(int i=1;i<20;i++)
jump[u][i]=jump[jump[u][i-1]][i-1];
for(int i=fir[u];i;i=nxt[i]){
if(v[i]==f)
continue;
dfs(v[i],u);
}
}
int lca(int x,int y){
if(dep[x]<dep[y])
swap(x,y);
for(int i=19;i>=0;i--)
if(dep[jump[x][i]]>=dep[y])
x=jump[x][i];
if(x==y)
return x;
for(int i=19;i>=0;i--)
if(jump[x][i]!=jump[y][i])
x=jump[x][i],y=jump[y][i];
return jump[x][0];
}
const int MOD = 1000000007;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
int fa[600400],n,m;
int find(int x){
if(fa[x]==x)
return x;
else
return fa[x]=find(fa[x]);
}
void merge(int x,int Lca){
while(dep[jump[x][0]]>dep[Lca]){
int f=jump[x][0];
fa[find(x)]=find(f);
fa[find(x+n)]=find(f+n);
x=find(f);
}
}
int ta[300300],tb[300300],Lca[300300];
int main(){
freopen("test.in","r",stdin);
// freopen("test.out","w",stdout);
scanf("%d %d",&n,&m);
for(int i=1;i<=2*n;i++)
fa[i]=i;
for(int i=1;i<n;i++){
int a,b;
scanf("%d %d",&a,&b);
addedge(a,b);
addedge(b,a);
}
dfs(1,0);
for(int i=1;i<=m;i++){
scanf("%d %d",&ta[i],&tb[i]);
Lca[i]=lca(ta[i],tb[i]);
merge(ta[i],Lca[i]);
merge(tb[i],Lca[i]);
}
for(int i=1;i<=m;i++){
if(Lca[i]!=ta[i]&&Lca[i]!=tb[i]){
fa[find(ta[i]+n)]=find(tb[i]);
fa[find(tb[i]+n)]=find(ta[i]);
}
}
int ans=0;
for(int i=2;i<=n;i++){
if(find(i)==find(i+n)){
printf("0\n");
return 0;
}
ans+=(find(i)==i);
ans+=(find(i+n)==(i+n));
}
printf("%d\n",pow(2,ans/2));
return 0;
}

p4434 [COCI2017-2018#2] ​​Usmjeri的更多相关文章

  1. COCI2017/2018 CONTEST #7

    Prosjek 显然,越大的数应该越后参与平均数的计算,这样受较小数的影响就小一些 那我们就排个序,贪心的从最小的数开始往大的计算平均数即可 时间复杂度\(O(nlogn)\) Timovi 把分组分 ...

  2. Usmjeri(COCI2017.2)题解

    题意 给一棵N个节点的树,编号从1到N,再给定m对点(u,v),你要将树上的每条无向边变为有向边,使得给定的点对都满足u能到达v或v能到达u.问有多少种不同的方案,答案对(1e9+7)求余. 1 ≤ ...

  3. 2018. The Debut Album

    http://acm.timus.ru/problem.aspx?space=1&num=2018 真心爱过,怎么能彻底忘掉 题目大意: 长度为n的串,由1和2组成,连续的1不能超过a个,连续 ...

  4. Math.abs(~2018),掌握规律即可!

    Math.abs(~2018) 某前端群的入门问题长姿势了,一个简单的入门问题却引发了我的思考,深深的体会到自己在学习前端技术的同时忽略遗忘了一些计算机的基础知识. 对于 JS Math对象没什么可说 ...

  5. 肖秀荣8套卷2018pdf下载|2018肖秀荣冲刺8套卷pdf下载电子版

    肖秀荣8套卷2018pdf下载|2018肖秀荣冲刺8套卷pdf下载电子版 下载链接: https://u253469.ctfile.com/fs/253469-229815828

  6. 2018年的UX设计师薪酬预测,你能拿多少?

    以下内容由Mockplus团队翻译整理,仅供学习交流,Mockplus是更快更简单的原型设计工具.   一个经验丰富的设计师完全可以根据地区和专业来可以预期薪酬之间的差距,其中悬殊最高可达80K. 本 ...

  7. Hello 2018, Bye 2017

    2017年过去了,过去一年经历了太多,改变了好多好多,可以说人生进入了另一个阶段,有可能是成熟吧. 回顾2017 去年换了新工作,离开了将近工作了8年的公司,不带走一丝云彩,为其任劳任怨,最后没有任何 ...

  8. New Life With 2018

    2017年转眼过去了.对自己来说.这一大年是迷茫和认知的一年.我的第一篇博客就这样记录下自己的历程吧 一:选择 从进入这一行到现在已经一年多了,2016年11月份就像所有的应届毕业生一样,都贼反感毕业 ...

  9. 2017 年终总结 & 2018 年度计划

    不立几个 Flag,都不知道怎么作死 2017 年度计划完成情况: 1.健身时间不少于350天:  未完成 中断了22天,实际运动 343天   2.至少每个月看一本书:  及格 <切尔诺贝利的 ...

随机推荐

  1. C语言控制台软件制作

    本题要求你写个程序把给定的符号打印成沙漏的形状.例如给定17个“*”,要求按下列格式打印 ***** *** * *** ***** 所谓“沙漏形状”,是指每行输出奇数个符号:各行符号中心对齐:相邻两 ...

  2. Oracle的查询-多行查询

    多行函数[聚合函数],作用于多行,返回一个值 ) from emp;--查询总数量 select count(empno) from emp;--查询总数量 select count(*) from ...

  3. Ubuntu中使用python3中的venv创建虚拟环境

    以前不知道Python3中内置了venv模块,一直用的就是virtualenv模块,venv相比virtualenv好用不少,可以替代virtualenv 一.安装venv包: $ sudo apt ...

  4. 编写shell脚本实现对虚拟机cpu、内存、磁盘监控机制

    一.安装Vmware,并通过镜像安装centos7. 二.安装xshell(可以不装,可以直接在虚拟机中直接进行以下步骤) 三.安装mail 一般Linux发送报警邮件通过本地邮箱或外部邮箱服务器,这 ...

  5. springboot @vaule注解失效解决办法

    在Controller类里面通过@Value将参数注入进来,最后的确成功了.因此基于此经验,我便在其他使用的类里面也采用这样的方式注入参数,但是发现去失效了,报错为NULL,说明参数并没有我们料想的被 ...

  6. Linux (x86) Exploit 开发系列教程之四(使用return-to-libc绕过NX bit)

    (1)原理: “NX Bit”的漏洞缓解:使某些内存区域不可执行,并使可执行区域不可写.示例:使数据,堆栈和堆段不可执行,而代码段不可写. 在NX bit打开的情况下,基于堆栈的缓冲区溢出的经典方法将 ...

  7. Python可修改和不可修改类型变量(mutuable and immutuable)

    通俗的讲,可修改可以理解为可以在数据所在内存地址直接修改,而不可修改则意味着一旦修改便是创建新的数据对象,而不是在原来的对象内存地址修改 1,Mutuable object [sourcecode l ...

  8. 第十章 ZYNQ-MIZ701 DDR3 PS读写操作方案

      本编文章的目的主要用简明的方法在纯PS里对DDR3进行读写. 本文所使用的开发板是Miz701 PC 开发环境版本:Vivado 2015.4 Xilinx SDK 2015.4 10.0本章难度 ...

  9. extra bytes at beginning or within zipfile

    主要用文本文档打开看看是否带有#!/bin/bash 修改pom文件<executable>false</executable>

  10. China Union Pay helper

    static string proxyIpAddress = AppConfig.GetProxyIpAddress; static string proxyUserName = AppConfig. ...