一次生产的JVM优化
背景
生产环境有二台阿里云服务器,均为同一时期购买的,CPU、内存、硬盘等配置相同。具体配置如下:
|
节点 |
CPU |
内存 |
硬盘 |
其它 |
|
A |
2CPU |
4G |
普通云盘 |
Centos6.4 64位+JDK1.8.0_121 |
|
B |
2CPU |
4G |
普通云盘 |
Centos6.4 64位+JDK1.8.0_121 |
由于这二服务器硬件和软件配置相同,并且运行相同的程序,所以在Nginx轮询策略均weight=1,即平台的某个流量由这二台机器平分。
有一次对系统进行例行检查,使用PinPoint查看下服务器”Heap Usage”的使用情况时,发现,在有一个系统Full GC非常频繁,大约五分钟一次Full GC(如果不明白Full GC的什么意思的,请自行百度),吓我一跳。这么频繁的Full GC,导致系统暂停处理业务,对系统的实时可用性大打折扣。我检查了一下Tomcat(Tomcat8.5.28)配置,发现在tomcat没有作任何关于JVM内存的设置,全部使用默认模式。由于这二服务器硬件和软件配置相同,并且运行相同的程序,所以在Nginx轮询策略均weight=1,即平台的某个流量由这二台机器平分。
GC数据
在业务峰期间,通过PinPoint观察的A、B节点的”Heap Usage”使用情况,分别进行以下几个时间段数据。
3小时图:

上图B系统在三个小时内,一共发生了22次Full GC,大约每8分钟进行一次Full GC。每次Full GC的时间大概有150ms左右,即B系统在三个小时内,大约有3300ms暂停系统运行。从上图来看,堆的空间最大值在890M左右,但在堆空间的大小大约200M就发生Full GC了,从系统资源的利用角度来考虑,这个使用率太低了。

上图A系统在3个小时内,一共发生了0次Full GC,嗯,就是没有任何停顿。 在这3小时,系统一直在处理业务,没有停顿。堆的总空间大约1536m,目前堆的空间大于500M。
6小时图:

上图B系统在6个小时的数据统计和3个小时很像,6个小时内一共发生了N次Full GC,均是堆的空间小于200M就发生Full GC了。

上图A系统在6个小时内,一共发生了0次Full GC,表现优秀。
12小时

上图B系统在12个小时内,一共发生了N次Full GC,左边Full GC比较少,是因为我们的业务主要集中白天,虽然晚上属于非业务高峰期间,还是有Full GC。

上图A系统在12个小时内,一共发生了0次Full GC,表现优秀。
GC日志
看下gc.log文件,因为我们两台服务器都输出了gc的详细日志,先看下B系统的Full GC日志。

上图全部是” [Full GC (Ergonomics)”日志,是因为已经去掉” GC (Allocation Failure”日志,这样更方便观察和分析日志,选取GC日志文件最后一条Full GC日志。
2018-12-24T15:52:11.402+0800: 447817.937: [Full GC (Ergonomics) [PSYoungGen: 480K->0K(20992K)] [ParOldGen: 89513K->69918K(89600K)] 89993K->69918K(110592K), [Metaspace: 50147K->50147K(1095680K)], 0.1519366 secs] [Times: user=0.21 sys=0.00, real=0.15 secs]
可以计算得到以下信息:
堆的大小:110592K=108M
老生代大小:89600K=87.5M
新生代大小:20992K=20.5M
分析:这次Full GC是因为老年代对象占用的空间的大小已经超过老年代容量 ([ParOldGen: 89513K->69918K(89600K)])引发的Full GC。是因为分配给老年代的空间太小,远远不能满足系统对业务的需要,导致老年代的空间常常被占满,老年代的空间满了,导致的Full GC。由于老年代的空间比较小,所以每次Full GC的时间也比较短。
A系统日志,只有2次Full GC,这2次GC均发生在系统启动时:

7.765: [Full GC (Metadata GC Threshold) [PSYoungGen: 18010K->0K(458752K)] [ParOldGen: 15142K->25311K(1048576K)] 33153K->25311K(1507328K), [Metaspace: 34084K->34084K(1081344K)], 0.0843090 secs] [Times: user=0.14 sys=0.00, real=0.08 secs]
可以得到以下信息:
堆的大小:1507328K=1472M
老生代大小:89600K=1024M
新生代大小:20992K=448M
分析:A系统只有系统启动才出现二次Full GC现象,而且是” Metadata GC Threshold”引起的,而不是堆空间引起的Full GC。虽然经过一个星期的观察,A系统没有Full GC,但一旦发生Full GC时间则会比较长。其它系统增加发现过,1024M的老年代,Full GC持续的时间大约是900ms秒。所以看得出来推也不是越大越好,或者说在UseParallelOldGC收集器中,堆的空间不是越大越好。
分析与优化
总体分析:
- B系统的Full GC过于频繁,是因为老生代只有约108M空间,根本无法满足系统在高峰时期的内存空间需求。由于ParOldGen(老年代)常常被耗尽,所以就发生Full GC事件了。
- A系统的堆初始空间(Xms)和堆的最大值(Xmx)均为1536m,完全可以满足业务高峰期的内存需求。
优化策略:
- B系统先增加堆空间大小,即通过设置Xms、 Xmx值增加堆空间。直接把Xms和Xmx均设置为1024M。直接堆的启动空间(Xms)直接设置为堆的最大值的原因是:因为直接把Xms设置为最大值(Xmx)可以避免JVM运行时不停的进行申请内存,而是直接在系统启动时就分配好了,从而提高系统的效率。把Xms(堆大小)设置为1024M,是因为采用JDK的建议,该建议通过命令得到” java -XX:+PrintCommandLineFlags -version” 。
其中,“-XX:MaxHeapSize=1004719104”,即Xmx为1024M,其它建议暂时不采纳。所以综合下来的B系统的JVM参数设置如下:export JAVA_OPTS="-server –Xms1024m -Xmx1024m -XX:+UseParallelOldGC -verbose:gc -Xloggc:../logs/gc.log -XX:+PrintGCDetails -XX:+PrintGCTimeStamps" - A系统JVM参数设置保持不变,以便观察系统运行情况,即:export JAVA_OPTS="-server -Xms1536m -Xmx1536m -XX:+UseParallelOldGC -verbose:gc -Xloggc:../logs/gc.log -XX:+PrintGCDetails -XX:+PrintGCTimeStamps"
- 将A、B节点系统的JVM参数采用2套参数,是为了验证A或B的参数更适合实际情况。
原文链接:https://my.oschina.net/u/3627055/blog/2995973
一次生产的JVM优化的更多相关文章
- 性能优化系列三:JVM优化
一.几个基本概念 GCRoots对象都有哪些 所有正在运行的线程的栈上的引用变量.所有的全局变量.所有ClassLoader... 1.System Class.2.JNI Local3.JNI Gl ...
- JVM优化
1.堆大小设置 JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:64 ...
- JVM 优化问题
jvm 优化问题 JVM堆内存分为2块:Permanent Space 和 Heap Space. Permanent 即 持久代(Permanent Generation),主要存放的是Java类定 ...
- 给hive的metastore做JVM优化
最近在测试环境下,hive的metastore不稳定,于是做一次JVM优化 在hive-env.sh中 export HADOOP_HOME=/opt/cdh/hadoop-2.6.0-cdh5.14 ...
- linux下jvm优化、tomcat调优
系统环境:jdk1.8,apache-tomcat-8.5.35 一.jvm优化 进入 bin/catalina.sh,修改JAVA_OPTS配置: JAVA_OPTS="-server - ...
- 系统优化怎么做-JVM优化之VisualVM
大家好,这里是「聊聊系统优化 」,并在下列地址同步更新 博客园:http://www.cnblogs.com/changsong/ 知乎专栏:https://zhuanlan.zhihu.com/yo ...
- (转)CentOS(5.8/6.4)linux生产环境若干优化实战
CentOS(5.8/6.4)linux生产环境若干优化实战 原文:http://blog.51cto.com/oldboy/1336488 特别说明:本文来自老男孩linux培训VIP学生学习笔记. ...
- 多核服务器的JVM优化选项(转载)
原文链接 现在多核CPU是主流.利用多核技术,可以有效发挥硬件的能力,提升吞吐量,对于Java程序,可以实现并发垃圾收集.但是Java利用多核技术也带来了一些问题,主要是多线程共享内存引起了.目前内存 ...
- JVM 优化之逃逸分析
整理自 周志明<深入JVM> 1, 是JVM优化技术,它不是直接优化手段,而是为其它优化手段提供依据. 2,逃逸分析主要就是分析对象的动态作用域. 3,逃逸有两种:方法逃逸和线程逃逸. ...
随机推荐
- python2.X与Python3.X区别
__future__模块 [回到目录] Python 3.x引入了一些与Python 2不兼容的关键字和特性,在Python 2中,可以通过内置的__future__模块导入这些新内容.如果你希望在P ...
- html页面之间相互传值
常见的在页面登录过后会获得一个token值然后页面跳转时传给下一个页面 sessionStorage.setItem("token",result.token);//传输token ...
- CF1204C
CF1204C-Anna, Svyatoslav and Maps 题意: 题目传送门 不想说了,阅读题. 解法: 先用floyd跑出各顶点间的最短路.把p(1)加入答案,然后沿着题目给的路径序列遍历 ...
- [JZOJ6345]:ZYB建围墙(数学+构造)
题目描述 $ZYB$之国是特殊的六边形构造. 已知王国一共有$N$户家庭,每个家庭需占据一个不同的六边形格子. 王国里交流很频繁,所以这些家庭要构成一个连通区域:同时出于安全考虑,国王$ZYB$想在外 ...
- 教你快速写一个EventBus框架
前言EventBus相信大多数人都用过,其具有方便灵活.解耦性强.体积小.简单易用等优点,虽然现在也有很多优秀的替代方案如RxBus.LiveDataBus等,但不可否认EventBus开创了消息总线 ...
- P4124 [CQOI2016]手机号码
P4124 [CQOI2016]手机号码 题解 数位DP DFS 虽然套路,但还是恶心到找不到锅在哪里 注意这个 然后你就发现其实这样就不用记录前导0了 锅在这个鬼地方QAQ 代码 #inclu ...
- linux内核中有哪些子系统(框架)呢?
注意: 分析用的linux内核版本为5.1.3 1. RTC子系统 2. Remote Processor子系统 3. Remote Processor Message子系统 4. SCSI子系统 5 ...
- SAN LAN MAN WAN的区别
主要是范围不同 SAN: System Area NetworkLAN: Local Area NetworkMAN: Metropolitan Area NetworkWAN: Wide Area ...
- Qt编写自定义控件15-百分比仪表盘
前言 百分比仪表盘,主要的应用场景是展示销售完成率.产品合格率等,也可以作为一个进度百分比展示,可以独立设置对应的标题文字,标题文字的颜色和整体的颜色都可以单独设置,建议设置成统一的风格,这样会显得更 ...
- 一百零三:CMS系统之使用sweetalert提示框优化返回结果
在base模板中引用 在修改密码的js中使用 $(function () { $('#submit').click(function (evnet) { evnet.preventDefault(); ...