传送门

显然每种礼物是互相独立的,一个礼物的分配不会影响另一个礼物

对于某个礼物 $x$ , 对于每个盒子来说,要么选要么不选,那么可以看成长度为 $m$ 的二进制序列

这个序列第 $i$ 位的数就代表第 $i$ 个盒子里是否有这个礼物,那么总方案即为 $2^m-1$ ,减 $1$ 是因为全 $0$ 的序列是不合法的

然后根据乘法原理最终答案即为每个礼物的方案的乘积 :$(2^m-1)^n$

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int mo=1e9+;
int n,m;
inline int ksm(int x,int y)
{
int res=;
while(y) { if(y&) res=1ll*res*x%mo; x=1ll*x*x%mo; y>>=; }
return res;
}
int main()
{
n=read(),m=read();
printf("%d\n",ksm((ksm(,m)-+mo)%mo,n));
return ;
}

Codeforces 1236B. Alice and the List of Presents的更多相关文章

  1. A - Alice and the List of Presents (排列组合+快速幂取模)

    https://codeforces.com/contest/1236/problem/B Alice got many presents these days. So she decided to ...

  2. Codeforces - 346A - Alice and Bob - 简单数论

    http://codeforces.com/problemset/problem/346/A 观察了一下,猜测和他们的最大公因数有关,除以最大公因数前后结果是不会变的. 那么怎么证明一定是有n轮呢?我 ...

  3. CodeForces 346A Alice and Bob (数学最大公约数)

    题意:有一堆数,然后有两个人轮流从中取出两个数,这两个数的差的绝对值不在这个集合,然后把这个数放进这个集合,如果哪个人不能拿了,就是输了,问你谁赢. 析:当时连题意都没看好,以为拿出两个数,就不放回了 ...

  4. Codeforces 1236F - Alice and the Cactus(期望+分类讨论)

    Codeforces 题面传送门 & 洛谷题面传送门 期望好题. 首先拆方差: \[\begin{aligned} &E((x-E(x))^2)\\ =&E(x^2)-2E(x ...

  5. CF1236B Alice and the List of Presents

    题意翻译 有nn种物品和mm个背包,每种物品有无限个,现将若干个物品放到这些背包中,满足: 1.每个背包里不能出现相同种类的物品(允许有空背包): 2.在所有的mm个背包中,每种物品都出现过. 求方案 ...

  6. CodeForces - 1236B (简单组合数学)

    题意 有n种物品和m个背包,每种物品有无限个,现将若干个物品放到这些背包中,满足: 1.每个背包里不能出现相同种类的物品(允许有空背包): 2.在所有的m个背包中,每种物品都出现过. 求方案数,对10 ...

  7. Codeforces 1236E. Alice and the Unfair Game

    传送门 首先可以注意到对于固定的起点 $S$ ,它最终能走到的终点一定是一段区间 这个用反证法容易证明,假设合法区间存在断点,这个点左右都可以作为终点 那么分成区间断点在起点左边和起点右边讨论一下即可 ...

  8. Codeforces 1236D. Alice and the Doll

    传送门 注意到每个位置只能右转一次,首先考虑如果图没有障碍那么显然要走螺旋形的 然后现在有障碍,容易发现对于某个位置如果既可以直走又可以右转,那么一定会选择直走 因为如果转了以后就一定没法走到原本直走 ...

  9. Codeforces Round #593 (Div. 2)

    传送门 A. Stones 签到. B. Alice and the List of Presents 单独考虑每个数的贡献即可. 答案为\((2^{m}-1)^n\). C. Labs 构造就类似于 ...

随机推荐

  1. 创建express项目(nodejs)

    1.下载nodejs安装包 nodejs官网下载最新版本就行,网址:http://nodejs.cn/download/,点击自己适用的系统,自动下载跟电脑操作系统位数符合的安装包, 2.配置环境 最 ...

  2. 重写equals为啥需要重写hashCode

    描述 以前一直记得重写equals要把hashCode也要重写了,但是一直也是没有搞明白, 最近在看一些东西,觉得有必要记录一下. 了解一下equals equals是Object类的方法, equa ...

  3. 15.反转链表 Java

    题目描述 输入一个链表,反转链表后,输出新链表的表头. 思路 本题的关键就是在于对next域的赋值,同时对下一个节点进行保存,然后对把下一个节点赋给新的节点,这样依次循环完所有的节点.每次使新插入的节 ...

  4. laravel如何从mysql数据库中随机抽取n条数据

    laravel如何从mysql数据库中随机抽取n条数据 一.总结 一句话总结: inRandomOrder():$userQuestions=UserQuestion::where($map)-> ...

  5. Qt之CMake和MinGW编译OpenCV

    这里编译的是最新版OpenCV3.4.3,编译过程比较曲折,大部分编译错误都可以查得到解决方法,也遇到了Google无果的错误,好在最后还是解决了,特此记录. 编译环境 win10-64bit Qt5 ...

  6. 前端知识点回顾之重点篇——CORS

    CORS(cross origin resource sharing)跨域资源共享 来源:http://www.ruanyifeng.com/blog/2016/04/cors.html 它允许浏览器 ...

  7. Android系统服务 —— WMS与AMS

    “可以毫不夸张的说,Android的framework层主要是由WMS.AMS还有View所构成,这三个模块穿插交互在整个framework中,掌握了它们之间的关系和每一个逻辑步骤,你对framewo ...

  8. ThreadUtils

    import android.os.Handler; import android.os.Looper; import java.util.concurrent.ExecutorService; im ...

  9. 计算机组成原理 — FPGA 现场可编程门阵列

    目录 文章目录 目录 FPGA FPGA 的应用场景 FPGA 的技术难点 FPGA 的工作原理 FPGA 的体系结构 FPGA 的开发 FPGA 的使用 FPGA 的优缺点 参考文档 FPGA FP ...

  10. Centos7.4.1708搭建syslog服务

    系统:centos7.4.1708环境:无互联网环境syslog使用端口为 UDP 514 将/etc/yum.repos.d目录下除CentOS-Media.repo文件所有文件重命名cd /etc ...