一、前言

Spark作为大数据计算引擎,凭借其快速、稳定、简易等特点,快速的占领了大数据计算的领域。本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路。文章内容为介绍Spark在DataMagic平台扮演的角色、如何快速掌握Spark以及DataMagic平台是如何使用好Spark的。

二、Spark在DataMagic平台中的角色

图 2-1

整套架构的主要功能为日志接入、查询(实时和离线)、计算。离线计算平台主要负责计算这一部分,系统的存储用的是COS(公司内部存储),而非HDFS。

下面将主要介绍Spark on Yarn这一架构,抽取出来即图2-2所示,可以看到Spark on yarn的运行流程。

图2-2

三、如何快速掌握Spark

对于理解Spark,我觉得掌握下面4个步骤就可以了。

1.理解Spark术语

对于入门,学习Spark可以通过其架构图,快速了解其关键术语,掌握了关键术语,对Spark基本上就有认识了,分别是结构术语Shuffle、Patitions、MapReduce、Driver、Application Master、Container、Resource Manager、Node Manager等。API编程术语关键RDD、DataFrame,结构术语用于了解其运行原理,API术语用于使用过程中编写代码,掌握了这些术语以及背后的知识,你就也知道Spark的运行原理和如何编程了。

2.掌握关键配置

Spark在运行的时候,很多运行信息是通过配置文件读取的,一般在spark-defaults.conf,要把Spark使用好,需要掌握一些关键配置,例如跟运行内存相关的,spark.yarn.executor.memoryOverhead、spark.executor.memory,跟超时相关的spark.network.timeout等等,Spark很多信息都可以通过配置进行更改,因此对于配置需要有一定的掌握。但是使用配置时,也要根据不同的场景,这个举个例子,例如spark.speculation配置,这个配置主要目的是推测执行,当worker1执行慢的情况下,Spark会启动一个worker2,跟worker1执行相同的任务,谁先执行完就用谁的结果,从而加快计算速度,这个特性在一般计算任务来说是非常好的,但是如果是执行一个出库到Mysql的任务时,同时有两个一样的worker,则会导致Mysql的数据重复。因此我们在使用配置时,一定要理解清楚,直接google spark conf就会列出很多配置了。

3.使用好Spark的并行

我们之所以使用Spark进行计算,原因就是因为它计算快,但是它快的原因很大在于它的并行度,掌握Spark是如何提供并行服务的,从而是我们更好的提高并行度。

对于提高并行度,对于RDD,需要从几个方面入手,1、配置num-executor。2、配置executor-cores。3、配置spark.default.parallelism。三者之间的关系一般为spark.default.parallelism=num-executors*executor-cores的2~3倍较为合适。对于Spark-sql,则设置spark.sql.shuffle.partitions、num-executor和executor-cores。

4.学会如何修改Spark代码

新手而言,特别是需要对Spark进行优化或者修改时,感到很迷茫,其实我们可以首先聚焦于局部,而Spark确实也是模块化的,不需要觉得Spark复杂并且难以理解,我将从修改Spark代码的某一角度来进行分析。

首先,Spark的目录结构如图3-1所示,可以通过文件夹,快速知道sql、graphx等代码所在位置,而Spark的运行环境主要由jar包支撑,如图3-2所示,这里截取部分jar包,实际上远比这多,所有的jar包都可以通过Spark的源代码进行编译,当需要修改某个功能时,仅需要找到相应jar包的代码,修改之后,编译该jar包,然后进行替换就行了。

图3-1

图3-2

而对于编译源代码这块,其实也非常简单,安装好maven、scala等相关依赖,下载源代码进行编译即可,掌握修改源码技巧对于使用好开源项目十分重要。

四、DataMagic平台中的Spark

Spark在DataMagic中使用,也是在边使用边探索的过程,在这过程中,列举了其比较重要的特点。

1.快速部署

在计算中,计算任务的数量以及数据的量级每天都会发生变化,因此对于Spark平台,需要有快速部署的特性,在实体机上,有一键部署脚本,只要运行一个脚本,则可以马上上线一个拥有128G内存、48cores的实体机,但是实体机通常需要申请报备才能获得,因此还会有docker来支持计算资源。

2.巧用配置优化计算

Spark大多数属性都是通过配置来实现的,因此可以通过配置动态修改Spark的运行行为,这里举个例子,例如通过配置自动调整exector的数量。

2.1 在nodeManager的yarn-site.xml添加配置

yarn.nodemanager.aux-services
mapreduce_shuffle,spark_shuffle
yarn.nodemanager.aux-services.spark_shuffle.class
org.apache.spark.network.yarn.YarnShuffleService

2.2 将spark-2.2.0-yarn-shuffle.jar文件拷贝到hadoop-yarn/lib目录下(即yarn的库目录)

2.3 在Spark的spark-default.xml添加配置

spark.dynamicAllocation.minExecutors 1 #最小Executor数
spark.dynamicAllocation.maxExecutors 100 #最大Executor数

通过这种配置,可以达到自动调整exector的目的。

3.合理分配资源

作为一个平台,其计算任务肯定不是固定的,有的数据量多,有的数据量少,因此需要合理分配资源,例如有些千万、亿级别的数据,分配20核计算资源就足够了。但是有些数据量级达到百亿的,就需要分配更多的计算资源了。参考第三章节的第3点。

4.贴合业务需求

计算的目的其实就是为了服务业务,业务的需求也理应是平台的追求,当业务产生合理需求时,平台方也应该尽量去满足。如为了支持业务高并发、高实时性查询的需求下,Spark在数据出库方式上,支持了Cmongo的出库方式。

sc = SparkContext(conf=conf) sqlContext = SQLContext(sc) database = d = dict((l.split('=') for l in dbparameter.split())) parquetFile = sqlContext.read.parquet(file_name) parquetFile.registerTempTable(tempTable) result = sqlContext.sql(sparksql) url = "mongodb://"+database['user']+":"+database['password']+"@"+database['host']+":"+database['port'] result.write.format("com.mongodb.spark.sql").mode('overwrite').options(uri=url,database=database['dbname'],collection=pg_table_name).save()

5.适用场景

Spark作为通用的计算平台,在普通的应用的场景下,一般而言是不需要额外修改的,但是DataMagic平台上,我们需要“在前行中改变”。这里举个简单的场景,在日志分析中,日志的量级达到千亿/日的级别,当底层日志的某些字段出现utf-8编码都解析不了的时候,在Spark任务中进行计算会发生异常,然后失败,然而如果在数据落地之前对乱码数据进行过滤,则有可能会影响数据采集的效率,因此最终决定在Spark计算过程中解决中这个问题,因此在Spark计算时,对数据进行转换的代码处加上异常判断来解决该问题。

6.Job问题定位

Spark在计算任务失败时候,需要去定位失败原因,当Job失败是,可以通过yarn logs -applicationId application 来合并任务log,打开log,定位到Traceback,一般可以找到失败原因。一般而言,失败可以分成几类。

a. 代码问题,写的Sql有语法问题,或者Spark代码有问题。
b. Spark问题,旧Spark版本处理NULL值等。
c. 任务长时间Running状态,则可能是数据倾斜问题。
d. 任务内存越界问题。

7.集群管理

Spark集群在日常使用中,也是需要运营维护的,从而运营维护,发现其存在的问题,不断的对集群进行优化,这里从以下几个方面进行介绍,通过运营手段来保障集群的健壮性和稳定性,保证任务顺利执行。

a. 定时查看是否有lost node和unhealthy node,可以通过脚本来定时设置告警,若存在,则需要进行定位处理。

b. 定时扫描hdfs的运行log是否满了,需要定时删除过期log。

c. 定时扫描集群资源是否满足计算任务使用,能够提前部署资源。

五、总结

本文主要是通过作者在搭建使用计算平台的过程中,写出对于Spark的理解,并且介绍了Spark在当前的DataMagic是如何使用的,当前平台已经用于架平离线分析,每天计算分析的数据量已经达到千亿~万亿级别。

长按识别关注我们,每天都有精彩内容分享哦!~

如何在万亿级别规模的数据量上使用Spark的更多相关文章

  1. 【DataMagic】如何在万亿级别规模的数据量上使用Spark

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 作者:张国鹏 | 腾讯 运营开发工程师 一.前言 Spark作为大数据计算引擎,凭借其快速.稳定. ...

  2. Oracle数据库--解决单张表中数据量巨大(大数据、数据量上百万级别,后查询,更新数据等耗时剧增)

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/QQ578473688/article/details/54561397 思路1:采用备份表 备份表中 ...

  3. 替代或者与 Redis 配合存储十亿级别列表的数据.

    http://ssdb.io/docs/zh_cn/index.html 用户案例 如果你在生产环境中使用 SSDB, 欢迎你给我发邮件(ssdb#udpwork.com), 我很愿意把你加入到下面的 ...

  4. 横瓜先生关于如何利用MYSQL数据库设计CMS系统处理100亿级TB规模的数据量

    遥执乾坤(44758121)  18:21:23 mysql据说只能使用一个索引,我这里几乎所有字段都有索引. 但每个字段就算用索引,也需要扫描至少100w以上记录. 横瓜(601069289)  1 ...

  5. 口护万亿市场杀出的实力派 Oclean欧可林

    撰文 |懂懂 编辑 | 秦言 来源:懂懂笔记 在"青年必去的电影节"上,发现了一个跟他们打成一片的智能护齿"新星". 25日,备受关注的第15届FIRST青年电 ...

  6. 微信支付万亿日志在Hermes中的实践

    导语 | 微信支付日志系统利用 Hermes 来实现日志的全文检索功能,自从接入以来,日志量持续增长.目前单日入库日志量已经突破万亿级,单集群日入库规模也已经突破了万亿,存储规模达 PB 级.本文将介 ...

  7. Kafka万亿级消息实战

    一.Kafka应用 本文主要总结当Kafka集群流量达到 万亿级记录/天或者十万亿级记录/天  甚至更高后,我们需要具备哪些能力才能保障集群高可用.高可靠.高性能.高吞吐.安全的运行. 这里总结内容主 ...

  8. MySQL数据库如何解决大数据量存储问题

    利用MySQL数据库如何解决大数据量存储问题? 各位高手您们好,我最近接手公司里一个比较棘手的问题,关于如何利用MySQL存储大数据量的问题,主要是数据库中的两张历史数据表,一张模拟量历史数据和一张开 ...

  9. 利用MySQL数据库如何解决大数据量存储问题?

    提问:如何设计或优化千万级别的大表?此外无其他信息,个人觉得这个话题有点范,就只好简单说下该如何做,对于一个存储设计,必须考虑业务特点,收集的信息如下:1.数据的容量:1-3年内会大概多少条数据,每条 ...

随机推荐

  1. FastAdmin 添加新字段后,不显示,可以直接去修改对应的js

  2. MemoScope.Net

    What is MemoScope.Net ? It's a tool to analyze .Net process memory: it can dump an application's mem ...

  3. Cannot use unsafe construct in safe context

    https://stackoverflow.com/questions/25953887/how-to-use-unsafe-code-in-safe-contex I am not sure if ...

  4. 一句话说明Facbook React证书的矛盾点

    这项专利授权说,如果您要使用我们根据这项授权发布的软件,假如您因为专利侵权而提起诉讼,您将失去我们的专利许可.

  5. OpenStack Blazar 架构解析与功能实践

    目录 文章目录 目录 Blazar Blazar 的安装部署 Blazar 的软件架构 Blazar 的资源模型与状态机 Blazar 的主机资源预留功能(Host Reservation) 代码实现 ...

  6. Servlet 表单数据 接收get post 参数实例

    Servlet 表单数据 很多情况下,需要传递一些信息,从浏览器到 Web 服务器,最终到后台程序.浏览器使用两种方法可将这些信息传递到 Web 服务器,分别为 GET 方法和 POST 方法. GE ...

  7. jq 实时监听input输入框的变化

    项目需求中有时候需要实时监测 input 的值变化,虽然 input 自身有 focus 和 blur 事件,但是有时候跟需求不符合. 所以实时监听 input 值变化的代码为: $("#i ...

  8. SQL学习(五)多表关联-join

    在实际工作中会用到多表联查,此时需要用到关键字JOIN 一.inner join(内连接) 至少有一个匹配时返回行,只返回两个表中连接字段相等的行 如: select * from ticket in ...

  9. vue中refs的使用

    最近在看其他项目的过程中,发现在dom节点上使用了ref="xxx"的使用,以前一直不知道该属性起着什么作用,因为一直忙着写项目. 这两天项目不忙了,有闲心来看别人做的项目了,就看 ...

  10. ORACLE 正则匹配

    1.正则匹配 select CONCAT(TO_NUMBER(REGEXP_REPLACE('019年','[^0-9]')),'年') from dual;