2019牛客多校第五场B generator 十进制快速幂
generator 1
题意
给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大)
分析
比赛的时候失了智,一直在想怎么把10进制转化成二进制来求,实际上可以换一种想法,既然转化不成二进制,那么直接就用十进制倍增行吗?只要对快速幂理解透彻,是可以实现的(快速幂的2进制证明改成10进制就证明成功了)
这题有个坑的地方是膜多了会T
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
char s[maxn];
typedef long long ll;
int mod;
struct mat{
ll m[3][3];
mat(){
memset(m,0,sizeof(m));
}
};
mat Mul(mat a,mat b){
mat res;
int i,j,k;
for( i=1;i<=2;i++){
for( j=1;j<=2;j++){
res.m[i][j]=0;
for(k=1;k<=2;k++){
res.m[i][j]+=(a.m[i][k]*b.m[k][j]);
res.m[i][j]%=mod;
}
}
}
return res;
}
mat fpow(mat a,ll b){
mat ans;
for(int i=1;i<=2;i++)ans.m[i][i]=1;
while(b){
if(b&1)ans=Mul(ans,a);
a=Mul(a,a);
b>>=1;
}
return ans;
}
int main(){
int x0,x1,a,b;
scanf("%d%d%d%d",&x0,&x1,&a,&b);
scanf("%s%d",s,&mod);
int len=strlen(s);
mat bs,ans;
bs.m[1][1]=a,bs.m[1][2]=b;
bs.m[2][1]=1;
ans.m[1][1]=ans.m[2][2]=1;
for(int i=len-1;i>=0;i--){
ans=Mul(ans,fpow(bs,s[i]-'0'));
bs=fpow(bs,10);
}
printf("%d",(1ll*x1*ans.m[2][1]%mod+1ll*x0*ans.m[2][2]%mod)%mod);
return 0;
}
2019牛客多校第五场B generator 十进制快速幂的更多相关文章
- 2019牛客多校第五场B-generator 1(矩阵快速幂)
generator 1 题目传送门 解题思路 矩阵快速幂.只是平时的矩阵快速幂是二进制的,这题要用十进制的快速幂. 代码如下 #include <bits/stdc++.h> #defin ...
- 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化
B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...
- 2019 牛客多校第五场 B generator 1
题目链接:https://ac.nowcoder.com/acm/contest/885/B 题目大意 略. 分析 十进制矩阵快速幂. 代码如下 #include <bits/stdc++.h& ...
- 2019牛客多校第五场C generator 2 hash,bsgs模板
generator 2 题意 给出\(x_0,a,b,p\),有方程\(x_i\equiv (a*x_{i-1}+b)(\% p)\),求最小的i,使得\(x_i=v\),不存在输出-1 分析 经过公 ...
- 2019牛客多校第五场C generator 2(BSGS)题解
题意: 传送门 已知递推公式\(x_i = a*x_{i - 1} + b\mod p\),\(p\)是素数,已知\(x_0,a,b,p\),给出一个\(n\)和\(v\),问你满足\(x_i = v ...
- generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)
目录 题目链接 思路 代码 题目链接 传送门 思路 十进制矩阵快速幂. 代码 #include <set> #include <map> #include <deque& ...
- 2019牛客多校第五场 generator 1——广义斐波那契循环节&&矩阵快速幂
理论部分 二次剩余 在数论中,整数 $X$ 对整数 $p$ 的二次剩余是指 $X^2$ 除以 $p$ 的余数. 当存在某个 $X$,使得式子 $X^2 \equiv d(mod \ p)$ 成立时,称 ...
- 2019牛客多校第五场generator2——BSGS&&手写Hash
题目 几乎原题 BZOJ3122题解 分析 先推一波公式,然后除去特殊情况分类讨论,剩下就是形如 $a^i \equiv b(mod \ p)$ 的方程,可以使用BSGS算法. 在标准的BSGS中,内 ...
- 2019牛客多校第五场F maximum clique 1 最大独立集
题意:给你n个数,现在让你选择一个数目最大的集合,使得集合中任意两个数的二进制表示至少有两位不同,问这个集合最大是多大?并且输出具体方案.保证n个数互不相同. 思路:容易发现,如果两个数不能同时在集合 ...
随机推荐
- Remoting、WCF、WebAPI、WCFREST、WebService之间的区别与联系
在.net平台下,有大量的技术让你创建一个服务,像Web Service,WCF,Web API,Remoting,我们来对比一下他们的区别与联系 Remoting Web Service WCF W ...
- Page Visibility API
在code review时看见同事使用visibilitychange 事件来监听页面的隐藏与显示,之前没有了解过这块,学习一下. document.visibilityState 主要有以下3个状态 ...
- 在javascript编程语言中,数据类型boolean的相关知识
一. 1.字符串类型: 空字符串返回false,非空字符串均返回true; 2.数值类型: 0或NaN返回false,其他数值返回true; 3.布尔类型: false返回false,true返回tr ...
- webdriver中的定位\模拟\及实例
Selenium webdriver 下载 pip install selenium pip install -i https://pypi.doubanio.com/simple/ selenium ...
- Java_Day7(上)
Java learning_Day7(上) 本人学习视频用的是马士兵的,也在这里献上 <链接:https://pan.baidu.com/s/1qKNGJNh0GgvlJnitTJGqgA> ...
- xampp安装配置比较容易卡住的地方
xampp作为一款集成建站软件,方便了不少初学的开发者,但是虽然是集成和傻瓜式的安装,还是会遇到一些容易卡壳的地方,这里记录自己觉得一些比较重要的东西. 1.端口问题 如图是我改之后的端口,原来端口为 ...
- jQuery中校验时间格式的正则表达式小结
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...
- MarkDown图文编辑系列教程(二)
一.写在前面 引言 本文是我写的MarkDown系列教程的第二篇,前一篇的地址:MarkDown图文编辑系列教程(一) 读完本篇,你将获得 学会使用markdown语法进行:区块引用(一种常用的引用格 ...
- Ueditor1.4.3.3 asp UTF-8版文件缺失修改方法
前几天在做一个项目中需要用富文本编辑器,最终选定用Ueditor编辑器,从官网下载源码(http://ueditor.baidu.com/website/download.html),按照文档创建de ...
- JavaScript 13 Ajax技术(未完)
<body> <!-- 添加文档主体内容 --> <header> <nav>JavaScript - Ajax - 读取XML文件</nav&g ...