题目大意:
N个方块 标号1~N 
K个操作 操作a b 表示标号a~b区间每位多加一个方块
Input

* Line 1: Two space-separated integers, N  K.

* Lines 2..1+K: Each line contains one of FJ's instructions in the form of two space-separated integers A  B (1 ≤ A ≤ B≤ N).

Output

* Line 1: The median height of a stack after Bessie completes the instructions.

Sample Input

7 4
5 5
2 4
4 6
3 5

Sample Output

1

即 有N = 7个方块,发出K = 4个指令。第一条指令是添加方块在堆栈5,第二个是添加方块到堆栈2..4等

输出细节:

操作完成后,堆栈的高度为 0, 1, 2, 3, 3, 1, 0。

中间堆栈高度为1,因为1是排序的顺序中的0, 0, 1, 1, 2, 3, 3。

区间表示法

#include <stdio.h>
#include <string.h>
#include <algorithm>
int flag[]={};
using namespace std;
int main()
{
int n,k;
scanf("%d%d",&n,&k);
while(k--)
{
int a,b;
scanf("%d%d",&a,&b);
flag[a]++;
flag[b+]--;
}
int sum=;
for(int i=;i<=n;i++)
{
sum+=flag[i];
flag[i]=sum;
}
sort(flag,flag+n+);
printf("%d\n",flag[n/+]); return ;
}

USACO2012 Haybale stacking /// 区间表示法 oj21556的更多相关文章

  1. Haybale Stacking(差分数组 + 求中位数的一些方法 + nth_element)

    题意: 给定N个初始值为0的数, 然后给定K个区间修改(区间[l,r] 每个元素加一), 求修改后序列的中位数. 分析: K个离线的区间修改可以使用差分数组(http://www.cnblogs.co ...

  2. 题解 SP10500 HAYBALE - Haybale stacking

    前言 想了好久树状数组啥的,后来想想写打个差分再说,结果写完一遍AC了-- 强烈安利 题意 一个由 \(n\) 个元素组成的序列,给出 \(k\) 个操作,每次将 \(a\sim b\) 加上 \(1 ...

  3. BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 418   Solved: 235 [ Submit][ ...

  4. Java中在特定区间产生随机数

    生成指定范围内的随机数 这个是最常用的技术之一.程序员希望通过随机数的方式来处理众多的业务逻辑,测试过程中也希望通过随机数的方式生成包含大量数字的测试用例.问题往往类似于: 如何随机生成 1~100 ...

  5. POJ 2104 K-th Number ( 求取区间 K 大值 || 主席树 || 离线线段树)

    题意 : 给出一个含有 N 个数的序列,然后有 M 次问询,每次问询包含 ( L, R, K ) 要求你给出 L 到 R 这个区间的第 K 大是几 分析 : 求取区间 K 大值是个经典的问题,可以使用 ...

  6. POJ 1990 MooFest(树状数组)

                                                                        MooFest Time Limit: 1000MS   Mem ...

  7. MooFest POJ - 1990 (树状数组)

    Every year, Farmer John's N (1 <= N <= 20,000) cows attend "MooFest",a social gather ...

  8. POJ1990--POJ 1990 MooFest(树状数组)

    Time Limit: 1000MSMemory Limit: 30000K Total Submissions: 8141Accepted: 3674 Description Every year, ...

  9. 使用sklearn做单机特征工程

    目录 1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺 ...

随机推荐

  1. error LNK2001: 无法解析的外部符号 __imp__MessageBoxA@16

    错误: error LNK2001: 无法解析的外部符号 __imp__MessageBoxA@16 原因: 本来程序的编译选项选择的是:使用标准windows库,当改为在静态库中使用MFC后就出现了 ...

  2. TCP状态转换图解析

    本文参考Unix网络编程卷1,对TCP状态转换进行总结,方便掌握TCP链接中各个状态及故障分析. 1.Linux下TCP相关工具 基于Linux系统查看网络状态,首先了解几个基本查看指令. Linux ...

  3. Java-Class-FC:java.lang.StringBuilder

    ylbtech-Java-Class-FC:java.lang.StringBuilder 1.返回顶部   2.返回顶部 1. @Override public String toString() ...

  4. CSS:CSS Positioning(定位)

    ylbtech-CSS:CSS Positioning(定位) 1.返回顶部 1. CSS Positioning(定位) position 属性指定了元素的定位类型. position 属性的四个值 ...

  5. hive调用MapReduce之后遇到kill command之后卡住或者一直开在MapReduce之前

    https://blog.csdn.net/weixin_42158422/article/details/88876943

  6. springMVC整合swagger(亲自试验完全可用)

    swagger是什么: [plain] view plain copy Swagger 是一款RESTFUL接口的文档在线自动生成+功能测试功能软件.本文简单介绍了在项目中集成swagger的方法和一 ...

  7. HDU 6628 permutation 1 (暴力)

    2019 杭电多校 5 1005 题目链接:HDU 6628 比赛链接:2019 Multi-University Training Contest 5 Problem Description A s ...

  8. Netty 相关目录

    Netty 相关目录 Netty 源码学习--客户端流程分析 Netty 源码学习--服务端流程分析 Netty 源码分析--ChannelPipeline Netty 源码学习--EventLoop ...

  9. 【HDOJ】P2058 The sum problem

    题意很简单就是给你一个N和M,让你求在1-N的那些个子序列的值等于M 首先暴力法不解释,简单超时 再仔细想一想可以想到因为1-N是一个等差数列,可以运用我们曾经学过的只是来解决 假设开始的位置为s,结 ...

  10. docker 常用

    docker 163仓库 # 更换docker源163 vim /etc/docker/daemon.json { "registry-mirrors": ["http: ...