题目

不是很明白为什么要叫做模板

考虑到\(a_i\)能对\(b_j\)产生贡献,当且仅当\(a_i=\prod p_k^{a_k},b_j=\prod p_k^{b_k},\forall k \ a_k\leq b_k\),于是我们把每一个质数次幂看成一维,相当于对\(a\)数组求一个高维前缀和

于是我们枚举每一个质数次幂,利用高维前缀和的方式来做就行了,复杂度同埃筛\(\operatorname{O(n\ log\ log\ n)}\)

#include<bits/stdc++.h>
#define re register
#define uint unsigned int
const int maxn=2e7+5;
uint seed,a[maxn],ans;
int n,f[maxn],p[maxn>>2];
inline uint getnxt(){
seed^=seed<<13;seed^=seed>>17;
seed^=seed<<5;return seed;
}
int main() {
scanf("%d%u",&n,&seed);
for(re int i=2;i<=n;i++) {
if(!f[i]) p[++p[0]]=i;
for(re int j=1;j<=p[0]&&p[j]*i<=n;j++) {
f[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
for(re int i=1;i<=n;i++) a[i]=getnxt();
for(re int i=1;i<=p[0];i++)
for(re int j=2;j*p[i]<=n;j++)
a[p[i]*j]+=a[j];
for(re int i=2;i<=n;i++) a[i]+=a[1],ans^=a[i];
printf("%u",ans^a[1]);
return 0;
}

LGP5495 Dirichlet 前缀和的更多相关文章

  1. [SOJ #112]Dirichlet 前缀和

    题目大意:给定一个长度为$n$的序列$a_n$,需要求出一个序列$b_n$,满足:$$b_k=\sum\limits_{i|k}a_i$$$n\leqslant10^7$ 题解:$\mathrm{Di ...

  2. Dirichlet 前缀和的几种版本

    [模板]Dirichlet 前缀和 求 \[B[i] = \sum_{d|i} A[d] \] $ n \le 2\times 10^{7} $ 看代码: for( int i = 1 ; i < ...

  3. luoguP5495:Dirichlet 前缀和

    题意:给定数组a[]的生成方式,然后b[i]=∑a[j]  ,(i%j==0),求所有b[i]的异或和.所有运算%2^32; 思路:高维前缀和的思想,先筛出所有素数,然后把每个素数当成一维,那么分开考 ...

  4. 【学习笔记】Dirichlet前缀和

    题目戳我 \(\text{Solution:}\) 观察到一个\(a_i\)若对\(a_j\)有贡献,则必须\(i\)的所有质因子幂次小于等于\(j\)的质因子幂次. 于是,我们可以枚举质数的倍数并累 ...

  5. CSP 2019 退役记

    声明:博主不会时空穿越,也没有造成恐慌,不应禁赛三年 Day0 上午:打板子 Polya定理; exkmp; exbsgs; 乘法逆元; 矩阵快速幂; 扫描线; ST表; excrt; Dirichl ...

  6. 【题解】「MCOI-02」Convex Hull 凸包

    题目戳我 \(\text{Solution:}\) \[\sum_{i=1}^n \sum_{j=1}^n \rho(i)\rho(j)\rho(\gcd(i,j)) \] \[=\sum_{d=1} ...

  7. BZOJ 1101 [POI2007]Zap ——Dirichlet积

    [题目分析] Dirichlet积+莫比乌斯函数. 对于莫比乌斯函数直接筛出处理前缀和. 对于后面向下取整的部分,可以分成sqrt(n)+sqrt(m)部分分别计算 学习了一下线性筛法. 积性函数可以 ...

  8. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  9. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

随机推荐

  1. Jmeter-【JSON Extractor】-响应结果中一级key取值

    一.请求返回样式 二.取code值 三.查看结果

  2. Exception一自定义异常

    异常体系的根类是:Throwable Throwable: Error:   重大的问题,我们处理不了.也不需要编写代码处理.比如说内存溢出. Exception:   一般性的错误,是需要我们对编写 ...

  3. 洛谷P2184——贪婪大陆

    传送门:QAQQAQ 题意:给一个长度为$n$的区间,每次可以进行两种操作: 1.在$[l,r]$这个区间里放置一个和之前种类不同的炸弹 2.查询在$[l,r]$区间内有多少种不同种类的炸弹 思路:第 ...

  4. 拾遗:Linux 用户及权限管理基础

    Lacks of Knowledge 1: Linux has large amount of COMMANDS,but many of them have similar funtions,it's ...

  5. SecureRandom的正确使用

    目录 1. 什么是安全的随机数? 2. 怎么得到安全的随机数 3. SecureRandom最佳实践 3.1 基本用法 3.2 关于种子的设置 3.3 熵源不足时阻塞问题 4. 小结 1. 什么是安全 ...

  6. 面试系列38 分库分表之后,id主键如何处理?

    (1)数据库自增id 这个就是说你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id.拿到这个id之后再往对应的分库分表里去写入. 这个方案 ...

  7. SSH的两种登录方式以及配置

    前言 SSH简介 Secure Shell(SSH) 是由 IETF(The Internet Engineering Task Force) 制定的建立在应用层基础上的安全网络协议.它是专为远程登录 ...

  8. Spring+SpringMVC+MyBatis+SpringSecurity+EhCache+JCaptcha 完整Web基础框架(前言)

    简单介绍一下,本框架的基本功能点: Spring:整个框架的主体部分,这个自不用说. SpringMVC:MVC部分我还是比较喜欢Spring的. MyBatis:选型的时候选择这个ORM主要也是考虑 ...

  9. 基于第三方开源库的OPC服务器开发指南(4)——后记:与另一个开源库opc workshop库相关的问题

    平心而论,我们从样例服务器的代码可以看出,利用LightOPC库开发OPC服务器还是比较啰嗦的,网上有人提出opc workshop库就简单很多,我千辛万苦终于找到一个05年版本的workshop库源 ...

  10. centos7使用iptables作为防火墙方法

    centos7使用iptables作为防火墙方法查看firewalld状态: systemctl status firewalld将centos7默认的firewalld停止,并将iptables作为 ...