「JSOI2015」套娃

传送门

考虑贪心。

首先我们假设所有的套娃都互相不套。

然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \(b_j \times out_i\) 的花费。

我们有一种 贪心策略就是说把所有套娃按 \(b\) 从大到小排序,然后每次找一个 \(out\) 最大的让它套。

我们可以这么证明正确性:

对于四个套娃 \(i, j, k, l\) ,假设 \(b_i > b_j, out_k > out_l\) 且保证 \(i, j\) 都可以套 \(k, l\) ,

那么我们只需要证 \(b_i \times out_k + b_j \times out_l \ge b_i \times out_l + b_j \times out_k\) ,根据假设,这个式子显然成立。

那么我们就可以按照刚刚的策略贪心了。

具体来说就是用一个 multiset 维护所有的 \(out\) ,然后按 \(b\) 排序,每次在 multiset 里面 lower_bound 一个最大的 \(out\) 然后把相应的代价减掉。

需要特别注意的是:如果 \(in_i = out_j\) ,那么 \(i\) 是不能套 \(j\) 的。

参考代码:

#include <algorithm>
#include <cstdio>
#include <set>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
} typedef long long LL;
const int _ = 2e5 + 5; int n; struct node { int in, out, b; } t[_];
inline bool cmp(const node& x, const node& y) { return x.b > y.b; } multiset < int > s;
multiset < int > ::iterator it; int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n);
LL ans = 0;
for (rg int i = 1; i <= n; ++i) {
read(t[i].out), read(t[i].in), read(t[i].b);
ans += 1ll * t[i].b * t[i].in, s.insert(t[i].out);
}
sort(t + 1, t + n + 1, cmp);
for (rg int i = 1; i <= n; ++i) {
it = s.lower_bound(t[i].in);
if (it != s.begin()) ans -= 1ll * t[i].b * (*--it), s.erase(it);
}
printf("%lld\n", ans);
return 0;
}

「JSOI2015」套娃的更多相关文章

  1. 「JSOI2015」串分割

    「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然 ...

  2. 「JSOI2015」isomorphism

    「JSOI2015」isomorphism 传送门 我们还是考虑树哈希来判同构. 但是我们需要使用一些特殊的手段来特殊对待假节点. 由于是无向树,我们首先求出重心,然后以重心为根跑树哈希. 此处我们不 ...

  3. 「JSOI2015」symmetry

    「JSOI2015」symmetry 传送门 我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈 ...

  4. 「JSOI2015」地铁线路

    「JSOI2015」地铁线路 传送门 第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) . 然后,跑一边最短路 ...

  5. 「JSOI2015」染色问题

    「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示 ...

  6. 「JSOI2015」圈地

    「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于 ...

  7. 「JSOI2015」最小表示

    「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个 ...

  8. 「JSOI2015」非诚勿扰

    「JSOI2015」非诚勿扰 传送门 我们首先考虑一名女性选中她列表里第 \(x\) 名男性的概率(假设她列表里共有 \(s\) 名男性): \[ P = p \times (1 - p) ^ {x ...

  9. 「JSOI2015」salesman

    「JSOI2015」salesman 传送门 显然我们为了使收益最大化就直接从子树中选大的就好了. 到达次数的限制就是限制了可以选的子树的数量,因为每次回溯上来都会减一次到达次数. 多种方案的判断就是 ...

随机推荐

  1. c++踩坑大法好 typedef和模板

    1,typedef字面意思,自定义一种数据类型 语法:typedef 类型名称 类型标识符; 基本用法: 1) 为基本数据类型定义新的类型名. 2) 为自定义数据类型(结构体.公用体和枚举类型)定义简 ...

  2. JS高级---识别正则表达式是否匹配

    识别正则表达式是否匹配 console.log(/[a-zA-Z]+/.test("hello")); console.log(/./.test("除了回车换行以为的任意 ...

  3. Tomcat/conf/server.xml文件中docBase和path的说明

    Tomcat的项目部署方式有以下三种: 1.直接把项目复制到Tomcat安装目录的webapps目录中,这是最简单的一种Tomcat项目部署的方法.2.在tomcat安装目录中有一个conf文件夹,打 ...

  4. ubuntu19.04 安装mysql,没有初始密码,重设初始密码

    1.安装 在终端下输入 sudo apt-get install mysql-server mysql-client 进行安装,如果安装过程中弹出密码输入提示,则正常安装即可! 2.由于没有出现密码设 ...

  5. python3练习100题——017

    原题链接:http://www.runoob.com/python/python-exercise-example17.html 题目:输入一行字符,分别统计出其中 英文字母.空格.数字和其它字符的个 ...

  6. 第三十三篇 玩转数据结构——红黑树(Read Black Tree)

    1.. 图解2-3树维持绝对平衡的原理: 2.. 红黑树与2-3树是等价的 3.. 红黑树的特点 简要概括如下: 所有节点非黑即红:根节点为黑:NULL节点为黑:红节点孩子为黑:黑平衡 4.. 实现红 ...

  7. 2.10 webdriver中 js 使用

    来源: 使用Webdriver执行JS小结  http://lijingshou.iteye.com/blog/2018929 selenium常用的js总结  http://www.cnblogs. ...

  8. java特性之二----继承

    1.继承的概述 ============================================================================================ ...

  9. java 快捷表达式

    :: 和 ->  主要说这两个,这个好像也叫:Lambda表达式    但我不知道对不对,就先叫他 “快捷表达式“,顾名思义:使用它,可以省很多代码,可以用来装X,但不便于阅读. 这种东西呢,虽 ...

  10. python 中if和elif的区别

    如果程序中判断事件很多,全部用if的话,会遍历整个程序,用elif 程序运行时,只要if或后续某一个elif之一满足逻辑值为True,则程序执行完对应输出语句后自动结束该轮if-elif(即不会再去冗 ...