「JSOI2015」套娃

传送门

考虑贪心。

首先我们假设所有的套娃都互相不套。

然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \(b_j \times out_i\) 的花费。

我们有一种 贪心策略就是说把所有套娃按 \(b\) 从大到小排序,然后每次找一个 \(out\) 最大的让它套。

我们可以这么证明正确性:

对于四个套娃 \(i, j, k, l\) ,假设 \(b_i > b_j, out_k > out_l\) 且保证 \(i, j\) 都可以套 \(k, l\) ,

那么我们只需要证 \(b_i \times out_k + b_j \times out_l \ge b_i \times out_l + b_j \times out_k\) ,根据假设,这个式子显然成立。

那么我们就可以按照刚刚的策略贪心了。

具体来说就是用一个 multiset 维护所有的 \(out\) ,然后按 \(b\) 排序,每次在 multiset 里面 lower_bound 一个最大的 \(out\) 然后把相应的代价减掉。

需要特别注意的是:如果 \(in_i = out_j\) ,那么 \(i\) 是不能套 \(j\) 的。

参考代码:

#include <algorithm>
#include <cstdio>
#include <set>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
} typedef long long LL;
const int _ = 2e5 + 5; int n; struct node { int in, out, b; } t[_];
inline bool cmp(const node& x, const node& y) { return x.b > y.b; } multiset < int > s;
multiset < int > ::iterator it; int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n);
LL ans = 0;
for (rg int i = 1; i <= n; ++i) {
read(t[i].out), read(t[i].in), read(t[i].b);
ans += 1ll * t[i].b * t[i].in, s.insert(t[i].out);
}
sort(t + 1, t + n + 1, cmp);
for (rg int i = 1; i <= n; ++i) {
it = s.lower_bound(t[i].in);
if (it != s.begin()) ans -= 1ll * t[i].b * (*--it), s.erase(it);
}
printf("%lld\n", ans);
return 0;
}

「JSOI2015」套娃的更多相关文章

  1. 「JSOI2015」串分割

    「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然 ...

  2. 「JSOI2015」isomorphism

    「JSOI2015」isomorphism 传送门 我们还是考虑树哈希来判同构. 但是我们需要使用一些特殊的手段来特殊对待假节点. 由于是无向树,我们首先求出重心,然后以重心为根跑树哈希. 此处我们不 ...

  3. 「JSOI2015」symmetry

    「JSOI2015」symmetry 传送门 我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈 ...

  4. 「JSOI2015」地铁线路

    「JSOI2015」地铁线路 传送门 第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) . 然后,跑一边最短路 ...

  5. 「JSOI2015」染色问题

    「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示 ...

  6. 「JSOI2015」圈地

    「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于 ...

  7. 「JSOI2015」最小表示

    「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个 ...

  8. 「JSOI2015」非诚勿扰

    「JSOI2015」非诚勿扰 传送门 我们首先考虑一名女性选中她列表里第 \(x\) 名男性的概率(假设她列表里共有 \(s\) 名男性): \[ P = p \times (1 - p) ^ {x ...

  9. 「JSOI2015」salesman

    「JSOI2015」salesman 传送门 显然我们为了使收益最大化就直接从子树中选大的就好了. 到达次数的限制就是限制了可以选的子树的数量,因为每次回溯上来都会减一次到达次数. 多种方案的判断就是 ...

随机推荐

  1. Jmeter-文件目录

    Jmeter文件目录介绍 1.bin:可执行文件目录 (1)jmeter.bat:windows的启动文件 (2)jmeter.log:日志文件 (3)jmeter.sh:linux的启动文件 (4) ...

  2. 前端框架-Vue 入门

    一.介绍 1.Vue.js 是什么 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架. Vue 的核心库只关注视图层,不仅易于上手,还便于与第三方库或既有项目整合. ...

  3. 简写函数字面量(function literal)

    如果函数的参数在函数体内只出现一次,则可以使用下划线代替: val f1 = (_: Int) + (_: Int) //等价于 val f2 = (x: Int, y: Int) => x + ...

  4. eslint全局变量报错 xxx is not defined

    找到.eslintrc.js,添加 "globals": { "你的全局变量": true }, 如果globals已经存在在里边加入你要忽略检测的全局变量即可 ...

  5. 用户注册(php)login(非美化)

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...

  6. 手动添加ubuntu服务

    在/etc/init.d/目录下创建一个简单的服务脚本,假设脚本名为hello #!/bin/sh case "$1" in start) # start 的代码 ;; stop) ...

  7. linux异常 - 弹出界面 eth0:设备eth0似乎不存在

    问题描述: 用VMware vSphere Client复制虚拟机之后,出现这个问题 解决方法: service network stop service NetworkManager restart

  8. Android 开发 assets和raw

    在Android Project中,有两个文件夹的数据是不会被编译,以原型的方式打包到APK中,这两个文件夹就是 assets 和 res/raw/ 相同点: 1.数据不会编译成二进制字节码. 2.可 ...

  9. java基础(十三)之接口

    接口 什么是接口? 生活中也有很多的接口,比如USB接口.定义了接口就是定义了调用对象的标准. 接口基本语法 1.使用interface定义:2.接口当中的方法都是抽象方法:因为抽象函数不能生成对象, ...

  10. flask入门(一)

    flask是一个轻量级的框架,据说跟django跟比是真的轻. 首先要先配置一个虚拟环境,flask项目需要在那个虚拟环境里运行,这里需要用的venv库实在python3里的标准库,不过有的linux ...