「Flink」使用Java lambda表达式实现Flink WordCount
本篇我们将使用Java语言来实现Flink的单词统计。
代码开发
环境准备
导入Flink 1.9 pom依赖
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.9.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.9.0</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.7</version>
</dependency>
</dependencies>
构建Flink流处理环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
自定义source
每秒生成一行文本
DataStreamSource<String> wordLineDS = env.addSource(new RichSourceFunction<String>() {
private boolean isCanal = false;
private String[] words = {
"important oracle jdk license update",
"the oracle jdk license has changed for releases starting april 16 2019",
"the new oracle technology network license agreement for oracle java se is substantially different from prior oracle jdk licenses the new license permits certain uses such as ",
"personal use and development use at no cost but other uses authorized under prior oracle jdk licenses may no longer be available please review the terms carefully before ",
"downloading and using this product an faq is available here ",
"commercial license and support is available with a low cost java se subscription",
"oracle also provides the latest openjdk release under the open source gpl license at jdk java net"
}; @Override
public void run(SourceContext<String> ctx) throws Exception {
// 每秒发送一行文本
while (!isCanal) {
int randomIndex = RandomUtils.nextInt(0, words.length);
ctx.collect(words[randomIndex]);
Thread.sleep(1000);
}
} @Override
public void cancel() {
isCanal = true;
}
});
单词计算
// 3. 单词统计
// 3.1 将文本行切分成一个个的单词
SingleOutputStreamOperator<String> wordsDS = wordLineDS.flatMap((String line, Collector<String> ctx) -> {
// 切分单词
Arrays.stream(line.split(" ")).forEach(word -> {
ctx.collect(word);
});
}).returns(Types.STRING); //3.2 将单词转换为一个个的元组
SingleOutputStreamOperator<Tuple2<String, Integer>> tupleDS = wordsDS
.map(word -> Tuple2.of(word, 1))
.returns(Types.TUPLE(Types.STRING, Types.INT)); // 3.3 按照单词进行分组
KeyedStream<Tuple2<String, Integer>, String> keyedDS = tupleDS.keyBy(tuple -> tuple.f0); // 3.4 对每组单词数量进行累加
SingleOutputStreamOperator<Tuple2<String, Integer>> resultDS = keyedDS
.timeWindow(Time.seconds(3))
.reduce((t1, t2) -> Tuple2.of(t1.f0, t1.f1 + t2.f1)); resultDS.print();
参考代码
public class WordCount {
public static void main(String[] args) throws Exception {
// 1. 构建Flink流式初始化环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 2. 自定义source - 每秒发送一行文本
DataStreamSource<String> wordLineDS = env.addSource(new RichSourceFunction<String>() {
private boolean isCanal = false;
private String[] words = {
"important oracle jdk license update",
"the oracle jdk license has changed for releases starting april 16 2019",
"the new oracle technology network license agreement for oracle java se is substantially different from prior oracle jdk licenses the new license permits certain uses such as ",
"personal use and development use at no cost but other uses authorized under prior oracle jdk licenses may no longer be available please review the terms carefully before ",
"downloading and using this product an faq is available here ",
"commercial license and support is available with a low cost java se subscription",
"oracle also provides the latest openjdk release under the open source gpl license at jdk java net"
}; @Override
public void run(SourceContext<String> ctx) throws Exception {
// 每秒发送一行文本
while (!isCanal) {
int randomIndex = RandomUtils.nextInt(0, words.length);
ctx.collect(words[randomIndex]);
Thread.sleep(1000);
}
} @Override
public void cancel() {
isCanal = true;
}
}); // 3. 单词统计
// 3.1 将文本行切分成一个个的单词
SingleOutputStreamOperator<String> wordsDS = wordLineDS.flatMap((String line, Collector<String> ctx) -> {
// 切分单词
Arrays.stream(line.split(" ")).forEach(word -> {
ctx.collect(word);
});
}).returns(Types.STRING); //3.2 将单词转换为一个个的元组
SingleOutputStreamOperator<Tuple2<String, Integer>> tupleDS = wordsDS
.map(word -> Tuple2.of(word, 1))
.returns(Types.TUPLE(Types.STRING, Types.INT)); // 3.3 按照单词进行分组
KeyedStream<Tuple2<String, Integer>, String> keyedDS = tupleDS.keyBy(tuple -> tuple.f0); // 3.4 对每组单词数量进行累加
SingleOutputStreamOperator<Tuple2<String, Integer>> resultDS = keyedDS
.timeWindow(Time.seconds(3))
.reduce((t1, t2) -> Tuple2.of(t1.f0, t1.f1 + t2.f1)); resultDS.print(); env.execute("app");
}
}
Flink对Java Lambda表达式支持情况
Flink支持Java API所有操作符使用Lambda表达式。但是,但Lambda表达式使用Java泛型时,就需要声明类型信息。
我们来看下上述的这段代码:
SingleOutputStreamOperator<String> wordsDS = wordLineDS.flatMap((String line, Collector<String> ctx) -> {
// 切分单词
Arrays.stream(line.split(" ")).forEach(word -> {
ctx.collect(word);
});
}).returns(Types.STRING);
之所以这里将所有的类型信息,因为Flink无法正确自动推断出来Collector中带的泛型。我们来看一下FlatMapFuntion的源代码
@Public
@FunctionalInterface
public interface FlatMapFunction<T, O> extends Function, Serializable {
/**
* The core method of the FlatMapFunction. Takes an element from the input data set and transforms
* it into zero, one, or more elements.
*
* @param value The input value.
* @param out The collector for returning result values.
*
* @throws Exception This method may throw exceptions. Throwing an exception will cause the operation
* to fail and may trigger recovery.
*/
void flatMap(T value, Collector<O> out) throws Exception;
}
我们发现 flatMap的第二个参数是Collector<O>,是一个带参数的泛型。Java编译器编译该代码时会进行参数类型擦除,所以Java编译器会变成成:
void flatMap(T value, Collector out)
这种情况,Flink将无法自动推断类型信息。如果我们没有显示地提供类型信息,将会出现以下错误:
org.apache.flink.api.common.functions.InvalidTypesException: The generic type parameters of 'Collector' are missing.
In many cases lambda methods don't provide enough information for automatic type extraction when Java generics are involved.
An easy workaround is to use an (anonymous) class instead that implements the 'org.apache.flink.api.common.functions.FlatMapFunction' interface.
Otherwise the type has to be specified explicitly using type information.
这种情况下,必须要显示指定类型信息,否则输出将返回值视为Object类型,这将导致Flink无法正确序列化。
所以,我们需要显示地指定Lambda表达式的参数类型信息,并通过returns方法显示指定输出的类型信息
我们再看一段代码:
SingleOutputStreamOperator<Tuple2<String, Integer>> tupleDS = wordsDS
.map(word -> Tuple2.of(word, 1))
.returns(Types.TUPLE(Types.STRING, Types.INT));
为什么map后面也需要指定类型呢?
因为此处map返回的是Tuple2类型,Tuple2是带有泛型参数,在编译的时候同样会被查出泛型参数信息,导致Flink无法正确推断。
更多关于对Java Lambda表达式的支持请参考官网:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/java_lambdas.html
「Flink」使用Java lambda表达式实现Flink WordCount的更多相关文章
- Java Lambda表达式初探
Java Lambda表达式初探 前言 本文受启发于Trisha Gee在JavaOne 2016的主题演讲Refactoring to Java 8. Java 8已经发行两年多,但很多人仍然在使用 ...
- Java Lambda表达式入门
Java Lambda表达式入门 http://blog.csdn.net/renfufei/article/details/24600507 Java 8十个lambda表达式案例 http://w ...
- Java Lambda表达式入门[转]
原文链接: Start Using Java Lambda Expressions http://blog.csdn.net/renfufei/article/details/24600507 下载示 ...
- Java Lambda表达式教程与示例
Lambda表达式是Java 8中引入的一个新特性.一个lambda表达式是一个匿名函数,而且这个函数没有名称且不属于任何类.lambda表达式的概念最初是在LISP编程语言中引入的. Java La ...
- Java Lambda表达式forEach无法跳出循环的解决思路
Java Lambda表达式forEach无法跳出循环的解决思路 如果你使用过forEach方法来遍历集合,你会发现在lambda表达式中的return并不会终止循环,这是由于lambda的底层实现导 ...
- java lambda表达式学习笔记
lambda是函数式编程(FP,functional program),在java8中引入,而C#很早之前就有了.在java中lambda表达式是'->',在C#中是‘=>’. 杜甫说:射 ...
- 《Java基础知识》Java Lambda表达式
接触Lambda表达式的时候,第一感觉就是,这个是啥?我居然看不懂,于是开始寻找资料,必须弄懂它. 先来看一个案例: @FunctionalInterface public interface MyL ...
- Java lambda 表达式常用示例
实体类 package com.lkb.java_lambda.dto; import lombok.Data; /** * @program: java_lambda * @description: ...
- Java lambda 表达式详解(JDK 8 新特性)
什么是 lambda 表达式 lambda 表达式(拉姆达表达式)是 JAVA 8 中提供的一种新的特性,它使 Java 也能进行简单的"函数式编程". lambda 表达式的本质 ...
随机推荐
- Windos下的一些命令集合
由于在CMD模式下(也就是命令行)有较多的有用的命令.以下是自己平时所记录下来的以帮助平时的任务. 1. 显示计算机的操作系统 wmic os get osarchitecture /value
- 深入理解ClassLoader
深入理解ClassLoader ClassLoader 作用 负责将 Class 加载到 JVM 中 ClassLoader主要对类的请求提供服务,当JVM需要某类时,它根据名称向ClassLoade ...
- [Codeforces 1228E]Another Filling the Grid(组合数+容斥)
题目链接 解题思路: 容斥一下好久可以得到式子 \(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni ...
- Docker三剑客之compose
简介 Compose 项目是 Docker 官方的开源项目,负责实现对 Docker 容器集群的快速编排.从功能上看,跟 OpenStack 中的 Heat 十分类似.其代码目前在 https://g ...
- SUSE Linux Enterprise 11 离线安装 DLIB 人脸识别 python机器学习模块
python机器学习模块安装 我的博客:http://www.cnblogs.com/wglIT/p/7525046.html 环境:SUSE Linux Enterprise 11 sp4 离线安 ...
- 初探 Node.js 框架:eggjs (环境搭配篇)
eggjs 是一个优秀的 Node.js 框架 概述:为什么标题上说 eggjs 是一个优秀的 Node.js 框架(可跳过)? 换言之,我们为什么选择 eggjs 进行开发而不是之前初学时使用的 E ...
- Codeforces_831
A.线性判断. #include<bits/stdc++.h> using namespace std; ] = {}; int main() { ios::sync_with_stdio ...
- 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...
- c++利用初始化列表在类内部和类外部定义构造函数的区别
case 1:在类外定义构造函数,所有data member都在初始化列表中进行初始化. class SupportClass { public: SupportClass() { cout < ...
- Spring学习笔记:使用Pointcut 和Advisor实现AOP
基础知识 在 Spring AOP 中,有 3 个常用的概念,Advices . Pointcut . Advisor ,解释如下: Advices :表示一个 method 执行前或执行后的动作. ...