【STM32H7教程】第62章 STM32H7的MDMA,DMA2D和通用DMA性能比较
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980
第62章 STM32H7的MDMA,DMA2D和通用DMA性能比较
本章节为大家比较MDMA,DMA2D和通用DMA的性能,方便大家在实际应用中选择合适的DMA方式。
62.1 初学者重要提示
62.2 测试条件说明
62.3 MDMA性能测试程序设计
62.4 DMA2D性能测试程序设计
62.5 通用DMA性能测试程序设计
62.6 MDMA、DMA2D和通用DMA性能比较
62.7 MDMA驱动移植和使用
62.8 实验例程设计框架
62.9 实验例程说明(MDK)
62.10 实验例程说明(IAR)
62.11 总结
62.1 初学者重要提示
- 学习本章节前,务必优先学习第61章,需要对MDMA的基础知识有个认识。
- 官方各种MDMA例子简易分析,方便大家更好的了解MDMA应用场景:http://www.armbbs.cn/forum.php?mod=viewthread&tid=88905 。
- 合理配置STM32H7的MDMA突发传输次数和源数据以及目的数据位宽可以再提升一点性能http://www.armbbs.cn/forum.php?mod=viewthread&tid=94071。
62.2 测试条件说明
MDMA,DMA2D和每个都测试了四种情况
- 64位带宽的AXI SRAM内部做64KB数据传输。
- 32位带宽的D2域SRAM1内部64KB数据传输。
- AXI SRAM向SDRAM传输64KB的数据传输。
- 32位带宽的SDRAM内部做64KB数据传输。
MDMA:
在D1域,支持64位带宽的DMA数据传输。
DMA2D:
在D1域,主要用图形2D加速。
DMA1和DMA2:
在D2域,支持32位带宽的DMA数据传输。
62.3 MDMA性能测试程序设计
这里将MDMA的程序设计分为以下几部分,逐一为大家做个说明:
62.3.1 第1步,MDMA初始化
程序代码如下,采用块传输,源地址和目的地址都是64bit数据传输,并设置16beat突发,也就是连续传输16组64bit数据。
. __HAL_RCC_MDMA_CLK_ENABLE();
.
. MDMA_Handle.Instance = MDMA_Channel0;
.
. MDMA_Handle.Init.Request = MDMA_REQUEST_SW; /* 软件触发 */
. MDMA_Handle.Init.TransferTriggerMode = MDMA_BLOCK_TRANSFER; /* 块传输 */
. MDMA_Handle.Init.Priority = MDMA_PRIORITY_HIGH; /* 优先级高*/
. MDMA_Handle.Init.Endianness = MDMA_LITTLE_ENDIANNESS_PRESERVE; /* 小端 */
. MDMA_Handle.Init.SourceInc = MDMA_SRC_INC_DOUBLEWORD; /* 源地址自增,双字,即8字节 */
. MDMA_Handle.Init.DestinationInc = MDMA_DEST_INC_DOUBLEWORD; /* 目的地址自增,双字,即8字节 */
. MDMA_Handle.Init.SourceDataSize = MDMA_SRC_DATASIZE_DOUBLEWORD; /* 源地址数据宽度双字,即8字节 */
. MDMA_Handle.Init.DestDataSize = MDMA_DEST_DATASIZE_DOUBLEWORD;/* 目的地址数据宽度双字,即8字节 */
. MDMA_Handle.Init.DataAlignment = MDMA_DATAALIGN_PACKENABLE; /* 小端,右对齐 */
. MDMA_Handle.Init.SourceBurst = MDMA_SOURCE_BURST_16BEATS; /* 源数据突发传输 */
. MDMA_Handle.Init.DestBurst = MDMA_DEST_BURST_16BEATS; /* 目的数据突发传输 */
.
. MDMA_Handle.Init.BufferTransferLength = ; /* 每次传输128个字节 */
.
. MDMA_Handle.Init.SourceBlockAddressOffset = ; /* 用于block传输,地址偏移0 */
. MDMA_Handle.Init.DestBlockAddressOffset = ; /* 用于block传输,地址偏移0 */
.
. /* 初始化MDMA */
. if(HAL_MDMA_Init(&MDMA_Handle) != HAL_OK)
. {
. Error_Handler(__FILE__, __LINE__);
. }
下面将程序设计中几个关键地方做个阐释:
- 第1行,务必优先初始化MDMA时钟,测试发现没有使能时钟的情况下就配置MDMA很容易失败。
- 第14-15行,突发传输的配置非常考究,每次突发传输的总数据大小不能超过128字节。
- 对于源地址就是SourceBurst * SourceDataSize <= BufferTransferLength。
- 对于目的地址就是DestBurst*DestDataSize <= BufferTransferLength。
比如当前的程序配置:
SourceBurst * SourceDataSize = 16*8 =128字节
DestBurst*DestDataSize = 16*8 =128字节
这里要特别注意一点,如果实际应用中最好小于BufferTransferLength,防止不稳定。
62.3.2 第2步,MDMA中断配置
MDMA的中断设置比较简单,代码如下,注册了MDMA的传输完成回调:
HAL_MDMA_RegisterCallback(&MDMA_Handle, HAL_MDMA_XFER_CPLT_CB_ID, MDMA_TransferCompleteCallback);
HAL_NVIC_SetPriority(MDMA_IRQn, , );
HAL_NVIC_EnableIRQ(MDMA_IRQn); void MDMA_IRQHandler(void)
{
HAL_MDMA_IRQHandler(&MDMA_Handle);
}
static void MDMA_TransferCompleteCallback(MDMA_HandleTypeDef *hmdma)
{
TransferCompleteDetected = ;
}
在传输完成回调里面设置了一个变量标志TransferCompleteDetected,方便指示传输完成。
62.3.3 第3步,AXI SRAM内部互传64KB数据
通过下面的程序实现将地址0x2400 0000开始的64KB数据复制到地址0x2400 0000 + 64*1024里面:
TransferCompleteDetected = ;
HAL_MDMA_Start_IT(&MDMA_Handle,
(uint32_t)0x24000000,
(uint32_t)(0x24000000 + *),
*,
); start = DWT_CYCCNT;
while(TransferCompleteDetected == ) {}
end = DWT_CYCCNT;
cnt = end - start; //64*1024/(cnt/400/1000/1000)/1024/1024 = 64*1000*1000*400/1024/cnt = 25000000/cnt
printf("MDMA---AXI SRAM内部互传64KB数据耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5ns。
62.3.4 第4步,D2域SRAM1内部互传64KB数据
通过下面的程序实现将地址0x3000 0000开始的64KB数据复制到地址0x3000 0000 + 64*1024里面:
TransferCompleteDetected = ;
HAL_MDMA_Start_IT(&MDMA_Handle,
(uint32_t)0x30000000,
(uint32_t)(0x30000000 + *),
*,
); start = DWT_CYCCNT;
while(TransferCompleteDetected == ) {}
end = DWT_CYCCNT;
cnt = end - start; printf("MDMA---D2域SRAM1内部互传64KB数据耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5ns。
62.3.5 第5步,AXI SRAM传输64KB数据到SDRAM
通过下面的程序实现将地址0x2400 0000开始的64KB数据复制到地址0xC000 0000里面:
TransferCompleteDetected = ;
HAL_MDMA_Start_IT(&MDMA_Handle,
(uint32_t)0x24000000,
(uint32_t)0xC0000000,
*,
); start = DWT_CYCCNT;
while(TransferCompleteDetected == ) {}
end = DWT_CYCCNT;
cnt = end - start; printf("MDMA---AXI SRAM传输64KB数据到SDRAM耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5n。
62.3.6 第6步,SDRAM内部互传64KB数据
通过下面的程序实现将地址0xC000 0000开始的64KB数据复制到地址0xC000 0000 + 64*1024里面:
TransferCompleteDetected = ;
HAL_MDMA_Start_IT(&MDMA_Handle,
(uint32_t)0xC0000000,
(uint32_t)(0xC0000000 + *),
*,
); start = DWT_CYCCNT;
while(TransferCompleteDetected == ) {}
end = DWT_CYCCNT;
cnt = end - start; printf("MDMA---SDRAM内部互传64KB数据耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5n。
62.4 DMA2D性能测试程序设计
这里将DMA2D的程序设计分为以下几部分,逐一为大家做个说明:
62.4.1 第1步,DMA2D初始化
配置DMA2D采用存储器到存储器模式,前景区和输出区都采用ARGB8888格式,传输64*256次,每次4字节,即64*256*4 = 64KB数据。
__HAL_RCC_DMA2D_CLK_ENABLE(); /* DMA2D采用存储器到存储器模式, 这种模式是前景层作为DMA2D输入 */
DMA2D->CR = 0x00000000UL;
DMA2D->FGOR = ;
DMA2D->OOR = ; /* 前景层和输出区域都采用的ARGB8888颜色格式 */
DMA2D->FGPFCCR = LTDC_PIXEL_FORMAT_ARGB8888;
DMA2D->OPFCCR = LTDC_PIXEL_FORMAT_ARGB8888; DMA2D->NLR = (uint32_t)( << ) | (uint16_t);
62.4.2 第2步,AXI SRAM内部互传64KB数据
通过下面的程序实现将地址0x2400 0000开始的64KB数据复制到地址0x2400 0000 + 64*1024里面:
/* AXI SRAM的64KB数据传输测试 ***********************************************/
DMA2D->FGMAR = (uint32_t)0x24000000;
DMA2D->OMAR = (uint32_t)(0x24000000 + *);
DMA2D->CR |= DMA2D_CR_START; start = DWT_CYCCNT;
/* 等待DMA2D传输完成 */
while (DMA2D->CR & DMA2D_CR_START) {}
end = DWT_CYCCNT;
cnt = end - start; printf("DMA2D---AXI SRAM内部互传64KB数据耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5ns。
62.4.3 第3步,D2域SRAM1内部互传64KB数据
通过下面的程序实现将地址0x3000 0000开始的64KB数据复制到地址0x3000 0000 + 64*1024里面:
/* D2域SRAM1的64KB数据传输测试 ***********************************************/
DMA2D->FGMAR = (uint32_t)0x30000000;
DMA2D->OMAR = (uint32_t)(0x30000000 + *);
DMA2D->CR |= DMA2D_CR_START; start = DWT_CYCCNT;
/* 等待DMA2D传输完成 */
while (DMA2D->CR & DMA2D_CR_START) {}
end = DWT_CYCCNT;
cnt = end - start; printf("DMA2D---D2域SRAM1内部互传64KB数据耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5ns。
62.4.4 第4步,AXI SRAM传输64KB数据到SDRAM
通过下面的程序实现将地址0x2400 0000开始的64KB数据复制到地址0xC000 0000里面:
/* AXI SRAM向SDRAM的64KB数据传输测试 ***********************************************/
DMA2D->FGMAR = (uint32_t)0x24000000;
DMA2D->OMAR = (uint32_t)0xC0000000;
DMA2D->CR |= DMA2D_CR_START; start = DWT_CYCCNT;
/* 等待DMA2D传输完成 */
while (DMA2D->CR & DMA2D_CR_START) {}
end = DWT_CYCCNT;
cnt = end - start; printf("DMA2D---AXI SRAM传输64KB数据到SDRAM耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5n。
62.4.5 第5步,SDRAM内部互传64KB数据
通过下面的程序实现将地址0xC000 0000开始的64KB数据复制到地址0xC000 0000 + 64*1024里面:
/* SDRAM的64KB数据传输测试 ***********************************************/
DMA2D->FGMAR = (uint32_t)0xC0000000;
DMA2D->OMAR = (uint32_t)(0xC0000000 + *);
DMA2D->CR |= DMA2D_CR_START; start = DWT_CYCCNT;
/* 等待DMA2D传输完成 */
while (DMA2D->CR & DMA2D_CR_START) {}
end = DWT_CYCCNT;
cnt = end - start; printf("DMA2D---SDRAM内部互传64KB数据耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5n
62.5 通用DMA性能测试程序设计
这里将DMA1的程序设计分为以下几部分,逐一为大家做个说明:
62.5.1 第1步,DMA1初始化
程序代码如下,采用存储区到存储区传输方式,源地址和目的地址都是32bit数据传输,并设置4beat突发,也就是连续传输4组32bit数据。
. __HAL_RCC_DMA1_CLK_ENABLE();
.
. DMA_Handle.Instance = DMA1_Stream1;
. DMA_Handle.Init.Request = DMA_REQUEST_MEM2MEM;
. DMA_Handle.Init.Direction = DMA_MEMORY_TO_MEMORY;
. DMA_Handle.Init.PeriphInc = DMA_PINC_ENABLE;
. DMA_Handle.Init.MemInc = DMA_MINC_ENABLE;
. DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
. DMA_Handle.Init.MemDataAlignment = DMA_PDATAALIGN_WORD;
. DMA_Handle.Init.Mode = DMA_NORMAL;
. DMA_Handle.Init.Priority = DMA_PRIORITY_VERY_HIGH;
. DMA_Handle.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
. DMA_Handle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
. DMA_Handle.Init.MemBurst = DMA_MBURST_INC4; /*WORD方式,仅支持4次突发 */
. DMA_Handle.Init.PeriphBurst = DMA_PBURST_INC4; /*WORD方式,仅支持4次突发 */
. DMA_Handle.XferCpltCallback = DMA_TransferCompleteCallback;
.
. HAL_DMA_Init(&DMA_Handle);
下面将程序设计中几个关键地方做个阐释:
- 第1行,务必优先初始化DMA时钟,测试发现没有使能时钟的情况下就配置DMA很容易失败。
- 第14-15行,突发传输的配置非常考究,这里要特别注意数据位宽,FIFO以及突发的配置。

程序中数据位宽是配置为32bit,FIFO配置为满,那么突发仅可以配置为4beat,即DMA_MBURST_INC4。
- 第16行,设置传输完成回调函数。
62.5.2 第2步,DMA1中断配置
DMA1的中断设置比较简单,代码如下:
HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, , );
HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn); void DMA1_Stream1_IRQHandler(void)
{
HAL_DMA_IRQHandler(&DMA_Handle);
}
static void DMA_TransferCompleteCallback(DMA_HandleTypeDef *hdma)
{
TransferCompleteDetected = ;
}
在传输完成回调里面设置了一个变量标志TransferCompleteDetected,方便指示传输完成。
62.5.3 第3步,AXI SRAM内部互传64KB数据
通过下面的程序实现将地址0x2400 0000开始的64KB数据复制到地址0x2400 0000 + 64*1024里面:
/* AXI SRAM的64KB数据传输测试 ***********************************************/
TransferCompleteDetected = ;
HAL_DMA_Start_IT(&DMA_Handle, (uint32_t)0x24000000, (uint32_t)(0x24000000 + *), *); start = DWT_CYCCNT;
while(TransferCompleteDetected == ) {}
end = DWT_CYCCNT;
cnt = end - start; //64*1024/(cnt/400/1000/1000)/1024/1024 = 64*1000*1000*400/1024/cnt = 25000000/cnt
printf("DMA1---AXI SRAM内部互传64KB数据耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5ns。
62.5.4 第4步,D2域SRAM1内部互传64KB数据
通过下面的程序实现将地址0x3000 0000开始的64KB数据复制到地址0x3000 0000 + 64*1024里面:
/* D2域SRAM1的64KB数据传输测试 ***********************************************/
TransferCompleteDetected = ;
HAL_DMA_Start_IT(&DMA_Handle, (uint32_t)0x30000000, (uint32_t)(0x30000000 + *), *); start = DWT_CYCCNT;
while(TransferCompleteDetected == ) {}
end = DWT_CYCCNT;
cnt = end - start; printf("DMA1---D2域SRAM1内部互传64KB数据耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5ns。
62.5.5 第5步,AXI SRAM传输64KB数据到SDRAM
通过下面的程序实现将地址0x2400 0000开始的64KB数据复制到地址0xC000 0000里面:
/* AXI SRAM向SDRAM的64KB数据传输测试 ***********************************************/
TransferCompleteDetected = ;
HAL_DMA_Start_IT(&DMA_Handle, (uint32_t)0x24000000, (uint32_t)0xC0000000, *); start = DWT_CYCCNT;
while(TransferCompleteDetected == ) {}
end = DWT_CYCCNT;
cnt = end - start; printf("DMA1---AXI SRAM传输64KB数据到SDRAM耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5n。
62.5.6 第6步,SDRAM内部互传64KB数据
通过下面的程序实现将地址0xC000 0000开始的64KB数据复制到地址0xC000 0000 + 64*1024里面:
/* SDRAM的64KB数据传输测试 ***********************************************/
TransferCompleteDetected = ;
HAL_DMA_Start_IT(&DMA_Handle, (uint32_t)0xC0000000, (uint32_t)(0xC0000000 + *), *); start = DWT_CYCCNT;
while(TransferCompleteDetected == ) {}
end = DWT_CYCCNT;
cnt = end - start; printf("DMA1---SDRAM内部互传64KB数据耗时 = %dus %dMB/S\r\n", cnt/, /cnt);
通过时钟周期计数器测量执行时间,单位2.5n。
62.6 MDMA,DMA2D和通用DMA性能比较
最终测试的性能如下:

可以看到DMA1的性能跟其它两个不是一个级别的,适合搞搞低速的外设。
DMA2D和MDMA互有高低。
62.7 MDMA驱动移植和使用
MDMA驱动的移植比较方便:
- 第1步:添加MDMA的HAL库文件,简单省事些可以添加所有HAL库.C源文件进来。
- 第2步,应用方法看本章节配套例子即可,另外就是根据自己的需要做配置修改。
62.8 实验例程设计框架
通过程序设计框架,让大家先对配套例程有一个全面的认识,然后再理解细节,本次实验例程的设计框架如下:

第1阶段,上电启动阶段:
- 这部分在第14章进行了详细说明。
第2阶段,进入main函数:
- 第1步,硬件初始化,主要是MPU,Cache,HAL库,系统时钟,滴答定时器,LED和SDRAM。
- 第2步,测评MDMA,DMA2D和通用DMA性能。
62.9 实验例程说明(MDK)
配套例子:
V7-038_MDMA,DMA2D和通用DMA性能比较
实验目的:
- 比较MDMA,DMA2D和DMA1的性能
实验内容:
MDMA,DMA2D和DMA1都测试了如下四种情况:
- 64位带宽的AXI SRAM内部做64KB数据传输。
- 32位带宽的D2域SRAM1内部64KB数据传输。
- AXI SRAM向SDRAM传输64KB的数据传输。
- 32位带宽的SDRAM内部做64KB数据传输。
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1

程序设计:
系统栈大小分配:

RAM空间用的DTCM:

硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/*
*********************************************************************************************************
* 函 数 名: bsp_Init
* 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
* 形 参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
/* 配置MPU */
MPU_Config(); /* 使能L1 Cache */
CPU_CACHE_Enable(); /*
STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
- 设置NVIV优先级分组为4。
*/
HAL_Init(); /*
配置系统时钟到400MHz
- 切换使用HSE。
- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
*/
SystemClock_Config(); /*
Event Recorder:
- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
- 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章
*/
#if Enable_EventRecorder == 1
/* 初始化EventRecorder并开启 */
EventRecorderInitialize(EventRecordAll, 1U);
EventRecorderStart();
#endif bsp_InitDWT(); /* 初始化DWT时钟周期计数器 */
bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
bsp_InitTimer(); /* 初始化滴答定时器 */
bsp_InitUart(); /* 初始化串口 */
bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */
bsp_InitLed(); /* 初始化LED */
bsp_InitExtSDRAM(); /* 初始化SDRAM */ bsp_InitI2C(); /* 初始化I2C总线 */
}
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区和D3域的SRAM4。DAC的数据缓存开在了SRAM4。
/*
*********************************************************************************************************
* 函 数 名: MPU_Config
* 功能说明: 配置MPU
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */
HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x24000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x60000000;
MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SDRAM的MPU属性为Write through, read allocate,no write allocate */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0xC0000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_32MB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER2;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
} /*
*********************************************************************************************************
* 函 数 名: CPU_CACHE_Enable
* 功能说明: 使能L1 Cache
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
/* 使能 I-Cache */
SCB_EnableICache(); /* 使能 D-Cache */
SCB_EnableDCache();
}
主功能:
主程序实现如下操作:
- 测试了MDMA,DMA2D和DMA1。
/*
*********************************************************************************************************
* 函 数 名: main
* 功能说明: c程序入口
* 形 参: 无
* 返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
bsp_Init(); /* 硬件初始化 */
PrintfLogo(); /* 打印例程名称和版本等信息 */ MDMA_SpeedTest();
printf("----------------------------------\n\r");
DMA2D_SpeedTest();
printf("----------------------------------\n\r");
DMA1_SpeedTest(); bsp_StartAutoTimer(, ); /* 启动1个200ms的自动重装的定时器,软件定时器0 */ /* 进入主程序循环体 */
while ()
{
bsp_Idle(); /* 判断软件定时器0是否超时 */
if(bsp_CheckTimer())
{
/* 每隔200ms 进来一次 */
bsp_LedToggle();
}
}
}
62.10 实验例程说明(IAR)
配套例子:
V7-038_MDMA,DMA2D和通用DMA性能比较
实验目的:
- 比较MDMA,DMA2D和DMA1的性能
实验内容:
MDMA,DMA2D和DMA1都测试了如下四种情况:
- 64位带宽的AXI SRAM内部做64KB数据传输。
- 32位带宽的D2域SRAM1内部64KB数据传输。
- AXI SRAM向SDRAM传输64KB的数据传输。
- 32位带宽的SDRAM内部做64KB数据传输。
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1

程序设计:
系统栈大小分配:

RAM空间用的DTCM:

硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/*
*********************************************************************************************************
* 函 数 名: bsp_Init
* 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
* 形 参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
/* 配置MPU */
MPU_Config(); /* 使能L1 Cache */
CPU_CACHE_Enable(); /*
STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
- 设置NVIV优先级分组为4。
*/
HAL_Init(); /*
配置系统时钟到400MHz
- 切换使用HSE。
- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
*/
SystemClock_Config(); /*
Event Recorder:
- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
- 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章
*/
#if Enable_EventRecorder == 1
/* 初始化EventRecorder并开启 */
EventRecorderInitialize(EventRecordAll, 1U);
EventRecorderStart();
#endif bsp_InitDWT(); /* 初始化DWT时钟周期计数器 */
bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
bsp_InitTimer(); /* 初始化滴答定时器 */
bsp_InitUart(); /* 初始化串口 */
bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */
bsp_InitLed(); /* 初始化LED */
bsp_InitExtSDRAM(); /* 初始化SDRAM */ bsp_InitI2C(); /* 初始化I2C总线 */
}
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区和D3域的SRAM4。DAC的数据缓存开在了SRAM4。
/*
*********************************************************************************************************
* 函 数 名: MPU_Config
* 功能说明: 配置MPU
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */
HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x24000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x60000000;
MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SDRAM的MPU属性为Write through, read allocate,no write allocate */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0xC0000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_32MB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER2;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
} /*
*********************************************************************************************************
* 函 数 名: CPU_CACHE_Enable
* 功能说明: 使能L1 Cache
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
/* 使能 I-Cache */
SCB_EnableICache(); /* 使能 D-Cache */
SCB_EnableDCache();
}
主功能:
主程序实现如下操作:
- 测试了MDMA,DMA2D和DMA1。
/*
*********************************************************************************************************
* 函 数 名: main
* 功能说明: c程序入口
* 形 参: 无
* 返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
bsp_Init(); /* 硬件初始化 */
PrintfLogo(); /* 打印例程名称和版本等信息 */ MDMA_SpeedTest();
printf("----------------------------------\n\r");
DMA2D_SpeedTest();
printf("----------------------------------\n\r");
DMA1_SpeedTest(); bsp_StartAutoTimer(, ); /* 启动1个200ms的自动重装的定时器,软件定时器0 */ /* 进入主程序循环体 */
while ()
{
bsp_Idle(); /* 判断软件定时器0是否超时 */
if(bsp_CheckTimer())
{
/* 每隔200ms 进来一次 */
bsp_LedToggle();
}
}
}
62.11 总结
本章节涉及到的知识点比较重要,以后用到DMA的地方比较多,可以根据性能选择合适的DMA。
【STM32H7教程】第62章 STM32H7的MDMA,DMA2D和通用DMA性能比较的更多相关文章
- 【STM32H7教程】第61章 STM32H7的MDMA基础知识和HAL库API
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第61章 STM32H7的MDMA基础知识和HAL ...
- 【STM32H7教程】第58章 STM32H7的硬件JPEG应用之图片解码显示
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第58章 STM32H7的硬件JPEG应用之图片解 ...
- 【STM32H7教程】第3章 STM32H7整体把控
完整教程下载地址:http://forum.armfly.com/forum.php?mod=viewthread&tid=86980 第3章 STM32H7整体把控 初学STM32H7一 ...
- 【STM32H7教程】第14章 STM32H7的电源,复位和时钟系统
完整教程下载地址:http://forum.armfly.com/forum.php?mod=viewthread&tid=86980 第14章 STM32H7的电源,复位和时钟系 ...
- 【STM32H7教程】第22章 STM32H7的SysTick实现多组软件定时器
完整教程下载地址:http://forum.armfly.com/forum.php?mod=viewthread&tid=86980 第22章 STM32H7的SysTick实现 ...
- 【STM32H7教程】第33章 STM32H7的定时器应用之TIM1-TIM17的中断实现
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第33章 STM32H7的定时器应用之TIM1-T ...
- 【STM32H7教程】第25章 STM32H7的TCM,SRAM等五块内存基础知识
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第25章 STM32H7的TCM,SRAM等五块内 ...
- 【STM32H7教程】第47章 STM32H7的FMC总线基础知识和HAL库API
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第47章 STM32H7的FMC总线基础知识和HA ...
- 【STM32H7教程】第57章 STM32H7硬件JPEG编解码基础知识和HAL库API
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第57章 STM32H7硬件JPEG编解码基础知识 ...
随机推荐
- [LOJ#2743][DP]「JOI Open 2016」摩天大楼
题目传送门 DP 经典题 考虑从小到大把数加入排列内 如下图(\(A\) 已经经过排序): 我们考虑如上,在 \(i\) ( \(A_i\) )不断增大的过程中,维护上面直线 \(y=A_i\) 之下 ...
- [bzoj2004] [洛谷P3204] [Hnoi2010] Bus 公交线路
Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距 离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决 ...
- windows下生成文件目录树
1.命令提示: tree /? 2.显示当前目录下的目录树(不显示文件) tree 3.递归显示目录结构(显示文件,常用于项目说明) tree /F 4.将显示的内容重定向到txt tree > ...
- HGE引擎改进——2014/1/27
2014/1/27 更新 hge库: 1.增加回调函数procResizeFunc(),这个函数会在窗口大小改变时调用,不是必要函数 2.修复LOG信息显示为乱码的错误 项目主页:https://co ...
- Python3基础之初识Python
Python介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序, 作为ABC语 ...
- BeautifulSoup标签定位方法总结
首先说明一下两个基本函数 .find() 和 .findAll(). find()返回第一个符合要求的标签 findAll()返回一个由所有符合要求的标签组成的列表.除此之外基本相同. 0.直接定位 ...
- 理解和运用Java中的Lambda
前提 回想一下,JDK8是2014年发布正式版的,到现在为(2020-02-08)止已经过去了5年多.JDK8引入的两个比较强大的新特性是Lambda表达式(下文的Lambda特指JDK提供的Lamb ...
- 暑假第三周总结(学习HDFS操作方法)
本周由于自己出去玩,以及家里的各种事也没好好看书,就对HDFS的一些常用的shell命令进行了学习与应用,观看了林子雨老师关于HDFS的视频,对HDFS的一些存储的原理.规则进行了一定的了解.对uba ...
- 【阿里云IoT+YF3300】13.阿里云IoT Studio WEB监控界面构建
Web可视化开发是阿里云IoT Studio中比较重要的一个功能,通过可视化拖拽的方式,方便地将各种图表组件与设备相关的数据源关联,无需编程,即可将物联网平台上接入的设备数据可视化展现. 目前支持的组 ...
- 将STM32F407片外SRAM作运行内存
本例演示用的软硬件: 片内外设驱动库:STM32CubeF41.24.1的HAL库1.7.6,2019年4月12日 IDE:MDK-ARM 5.28.0.0,2019年5月 开发板:片外SRAM挂在F ...