[NOI.AC] count
思路:
考虑组合数学。
当所求中没有重复的时候,方案数就是\(C_{n + 1}^{k}\)
当有重复的时候...
设相等的数字之间的距离为\(len\)
当取0个数时,方案数就是\(C_{n - 1}^{k}\)
取1个数时,方案数大概是\(2 * C_{n - 1}^{k - 1}\) ,但是如果相同的数字之间那一段没有取任何一个其他的数,那么取任意一个相同的数都是等价的,所以要减去\(C_{n - len}^{i - 1}\)
取了两个数,方案数就是\(C_{n - 1}^{k - 2}\)
考试炸了范围...
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define int long long
const int maxn = 200010;
const int mod = 1e9+7;
int n;
inline int pow_mod(int x,int y) {
int res = 1;
while(y) {
if(y & 1) res = res * x % mod;
x = x * x % mod;
y >>= 1;
}
return res % mod;
}
inline int read() {
int q=0,f=1;char ch = getchar();
while(!isdigit(ch)){
if(ch==-'-')f=-1;ch=getchar();
}
while(isdigit(ch)){
q=q*10+ch-'0';ch=getchar();
}
return q*f;
}
int fac[maxn];
int a[maxn];
int vis[maxn];
int ifac[maxn];
inline int C(int x,int y) {
if(x < y) return 0;
if(y < 0) return 0;
return fac[x] * ifac[y] % mod * ifac[x - y] % mod;
}
int len;
int ans[maxn];
inline void pre () {
fac[0] = 1;
for(int i = 1;i <= n + 1; ++i) {
fac[i] = fac[i - 1] * i % mod;
}
ifac[n + 1] = pow_mod(fac[n + 1],mod - 2);
for(int i = n;i >= 0; --i) {
ifac[i] = ifac[i + 1] * (i + 1) % mod;
}
}
signed main () {
n = read();
for(int i = 1;i <= n + 1; ++i) {
a[i] = read();
if(vis[a[i]] == 0) {
vis[a[i]] = i;
}
else len = i - vis[a[i]] + 1;
}
pre();
for(int i = 1;i <= n + 1; ++i) {
int res = C(n - 1,i);
res = (res + 2 * C(n - 1,i - 1)) % mod;
res = (res - C(n - len + 1,i - 1) + mod) % mod;
res = (res + C(n - 1,i - 2)) % mod;
ans[i] = res;
}
for(int i = 1;i <= n + 1; ++i)
printf("%lld\n",ans[i]);
return 0;
}
[NOI.AC] count的更多相关文章
- [NOI.AC]COUNT(数学)
解析: 也可以将所有的可能都计算出来,后进行减法运算. 代码: #include<bits/stdc++.h> using namespace std; #define ll long l ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- SDOI2015 寻宝游戏 | noi.ac#460 tree
题目链接:戳我 可以知道,我们相当于是把有宝藏在的地方围了一个圈,求这个圈最小是多大. 显然按照dfs序来遍历是最小的. 那么我们就先来一遍dfs序列,并且预处理出来每个点到根的距离(这样我们就可用\ ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
随机推荐
- 【leetcode】962. Maximum Width Ramp
题目如下: Given an array A of integers, a ramp is a tuple (i, j) for which i < j and A[i] <= A[j]. ...
- 源码方式安装 lrzsz库
源码方式安装 lrzsz库:https://www.cnblogs.com/cocoajin/p/11731787.html 我们都知道安装了lrzsz工具的linux系统环境,在shell里可以非常 ...
- 数据结构和算法设计专题之---二分查找(Java版)
1.前提:二分查找的前提是需要查找的数组必须是已排序的,我们这里的实现默认为升序 2.原理:将数组分为三部分,依次是中值(所谓的中值就是数组中间位置的那个值)前,中值,中值后:将要查找的值和数组的中值 ...
- SpringBoot整合MongoDB,在多数据源下实现事务回滚。
项目中用到了MongoDB,准备用来存储业务数据,前提是要实现事务,保证数据一致性,MongoDB从4.0开始支持事务,提供了面向复制集的多文档事务特性.能满足在多个操作,文档,集合,数据库之间的事务 ...
- delphi 文件夹操作(监控)
delphi 监控文件系统 delphi 监控文件系统 你是否想为你的Windows加上一双眼睛,察看使用者在机器上所做的各种操作(例如建立.删除文件:改变文件或目录名字)呢? 这里介绍一种利用Win ...
- Java桌球小游戏1
版本三.使小球动起来package cn.xjion.game;/** * 水平滚动 * @author xjion * */import java.awt.*;import javax.swing. ...
- git clone后切换分支,和远端的不一样。
原因 git clone后再master分支,切换后到了别的分支,分支里面的文件目录是不一样的,导致出现错误. 解决 删除原来的全部文件 git pull 可是git pull报错, git匹配的文件 ...
- qemu的动态翻译机制
qemu的作者在QEMU, a Fast and Portable Dynamic Translator一文提到了qemu的动态翻译机制, 大致可以总结为如下过程: 目标代码中的一条指令 | |--( ...
- Day 16 : Python 时间模块[time,]datetime[]及第三方模块的下载与安装
在进行python程序开发时,除了可以使用python内置的标准模块外,还右许多第三方模块使用,可以在python官网找到. 在使用第三方模块时,需要下载并安装此模块,然后就可以使用标准模块一样导入并 ...
- 并发编程之CAS(二)
更多Android架构进阶视频学习请点击:https://space.bilibili.com/474380680本篇文章将从以下几个内容来阐述CAS: [CAS原理] [CAS带来的ABA问题] 一 ...