[NOI.AC] count
思路:
考虑组合数学。
当所求中没有重复的时候,方案数就是\(C_{n + 1}^{k}\)
当有重复的时候...
设相等的数字之间的距离为\(len\)
当取0个数时,方案数就是\(C_{n - 1}^{k}\)
取1个数时,方案数大概是\(2 * C_{n - 1}^{k - 1}\) ,但是如果相同的数字之间那一段没有取任何一个其他的数,那么取任意一个相同的数都是等价的,所以要减去\(C_{n - len}^{i - 1}\)
取了两个数,方案数就是\(C_{n - 1}^{k - 2}\)
考试炸了范围...
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define int long long
const int maxn = 200010;
const int mod = 1e9+7;
int n;
inline int pow_mod(int x,int y) {
int res = 1;
while(y) {
if(y & 1) res = res * x % mod;
x = x * x % mod;
y >>= 1;
}
return res % mod;
}
inline int read() {
int q=0,f=1;char ch = getchar();
while(!isdigit(ch)){
if(ch==-'-')f=-1;ch=getchar();
}
while(isdigit(ch)){
q=q*10+ch-'0';ch=getchar();
}
return q*f;
}
int fac[maxn];
int a[maxn];
int vis[maxn];
int ifac[maxn];
inline int C(int x,int y) {
if(x < y) return 0;
if(y < 0) return 0;
return fac[x] * ifac[y] % mod * ifac[x - y] % mod;
}
int len;
int ans[maxn];
inline void pre () {
fac[0] = 1;
for(int i = 1;i <= n + 1; ++i) {
fac[i] = fac[i - 1] * i % mod;
}
ifac[n + 1] = pow_mod(fac[n + 1],mod - 2);
for(int i = n;i >= 0; --i) {
ifac[i] = ifac[i + 1] * (i + 1) % mod;
}
}
signed main () {
n = read();
for(int i = 1;i <= n + 1; ++i) {
a[i] = read();
if(vis[a[i]] == 0) {
vis[a[i]] = i;
}
else len = i - vis[a[i]] + 1;
}
pre();
for(int i = 1;i <= n + 1; ++i) {
int res = C(n - 1,i);
res = (res + 2 * C(n - 1,i - 1)) % mod;
res = (res - C(n - len + 1,i - 1) + mod) % mod;
res = (res + C(n - 1,i - 2)) % mod;
ans[i] = res;
}
for(int i = 1;i <= n + 1; ++i)
printf("%lld\n",ans[i]);
return 0;
}
[NOI.AC] count的更多相关文章
- [NOI.AC]COUNT(数学)
解析: 也可以将所有的可能都计算出来,后进行减法运算. 代码: #include<bits/stdc++.h> using namespace std; #define ll long l ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- SDOI2015 寻宝游戏 | noi.ac#460 tree
题目链接:戳我 可以知道,我们相当于是把有宝藏在的地方围了一个圈,求这个圈最小是多大. 显然按照dfs序来遍历是最小的. 那么我们就先来一遍dfs序列,并且预处理出来每个点到根的距离(这样我们就可用\ ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
随机推荐
- rest_framework框架实现之(视图,路由,渲染器)
一视图 一 在前面我们使用视图时继承的时APIview from rest_framework.response import Response from rest_framework.paginat ...
- 基于.Net4.0实现 ToastNotification
基于.Net4.0实现 ToastNotification Windows更新之路的特色之一就是消息提示由气泡变成了通知窗口,效果简直不要太好.最近公司有这方面的需求,需要在xp,win7系统上给出提 ...
- 【leetcode】538. Convert BST to Greater Tree
题目如下: Given a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the orig ...
- Java 基础 - 继承
子类继承父类的private字段么? Oracle的Java Documentation对Inheritance的定义: 很直白,定义里面就告诉你了这不叫继承.继承的意思是你可以对其进行直接的调用和修 ...
- 分布式项目pom
<dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit ...
- ueditor不能上传mp4格式的视频--解决方案
1.ueditor.all.js 去掉所有的 type="application/x-shockwave-flash" 2.ueditor.all.min.js 去掉所有的 typ ...
- python 模块-json
1.JSON(Javascript Object Notation) 是一种轻量级的数据交换格式.易于人阅读和编写.同时也易于机器解析和生成.它基于JavaScript Programming Lan ...
- hdu2089数位DP
旁听途说这个名字很久了,了解了一下. 改题目的意思是给你若干区间,让你找寻区间内不含62或4的数. 首先暴力必然T...那么实际上就是说,想办法做一种预处理,在每次输入的时候取值运算就可以了. 既然是 ...
- 使用redis实现客户端和服务端token验证
实在是思维江化啊,没有想到可以给redis设置不同的key值来实现不同key值存储不同的value值,而一直想着给一个名为token的key值新增不同的数据,并设置过期时间,然而这样却不能新增只能做到 ...
- swapper_pg_dir的作用
在内存系统初始化过程中,有如下代码: 1: static void __init pagetable_init(void) 2: { 3: pgd_t *pgd_base = swapper_pg_d ...