在Spark中,也支持Hive中的自定义函数。自定义函数大致可以分为三种:

UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等
UDAF(User- Defined Aggregation Funcation),用户自定义聚合函数,类似在group by之后使用的sum,avg等
UDTF(User-Defined Table-Generating Functions),用户自定义生成函数,有点像stream里面的flatMap
自定义一个UDF函数需要继承UserDefinedAggregateFunction类,并实现其中的8个方法

示例

import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, StringType, StructField, StructType}

object GetDistinctCityUDF extends UserDefinedAggregateFunction{
  /**
    * 输入的数据类型
    * */
  override def inputSchema: StructType = StructType(
    StructField("status",StringType,true) :: Nil
  )
  /**
    * 缓存字段类型
    * */
  override def bufferSchema: StructType = {
    StructType(
      Array(
        StructField("buffer_city_info",StringType,true)
      )
    )
  }
/**
  * 输出结果类型
  * */
  override def dataType: DataType = StringType
/**
  * 输入类型和输出类型是否一致
  * */
  override def deterministic: Boolean = true
/**
  * 对辅助字段进行初始化
  * */
  override def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer.update(0,"")
  }
/**
  *修改辅助字段的值
  * */
  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    //获取最后一次的值
    var last_str = buffer.getString(0)
    //获取当前的值
    val current_str = input.getString(0)
    //判断最后一次的值是否包含当前的值
    if(!last_str.contains(current_str)){
      //判断是否是第一个值,是的话走if赋值,不是的话走else追加
      if(last_str.equals("")){
        last_str = current_str
      }else{
        last_str += "," + current_str
      }
    }
    buffer.update(0,last_str)

  }
/**
  *对分区结果进行合并
  * buffer1是机器hadoop1上的结果
  * buffer2是机器Hadoop2上的结果
  * */
  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    var buf1 = buffer1.getString(0)
    val buf2 = buffer2.getString(0)
    //将buf2里面存在的数据而buf1里面没有的数据追加到buf1
    //buf2的数据按照,进行切分
    for(s <- buf2.split(",")){
      if(!buf1.contains(s)){
        if(buf1.equals("")){
          buf1 = s
        }else{
          buf1 += s
        }
      }
    }
    buffer1.update(0,buf1)
  }
/**
  * 最终的计算结果
  * */
  override def evaluate(buffer: Row): Any = {
    buffer.getString(0)
  }
}

注册自定义的UDF函数为临时函数

def main(args: Array[String]): Unit = {
    /**
      * 第一步 创建程序入口
      */
    val conf = new SparkConf().setAppName("AralHotProductSpark")
    val sc = new SparkContext(conf)
    val hiveContext = new HiveContext(sc)
  //注册成为临时函数
    hiveContext.udf.register("get_distinct_city",GetDistinctCityUDF)
  //注册成为临时函数
    hiveContext.udf.register("get_product_status",(str:String) =>{
      var status = 0
      for(s <- str.split(",")){
        if(s.contains("product_status")){
          status = s.split(":")(1).toInt
        }
      }
    })
}

Spark学习之路 (十九)SparkSQL的自定义函数UDF[转]的更多相关文章

  1. Spark学习之路 (十九)SparkSQL的自定义函数UDF

    在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF( ...

  2. Spark(十三)SparkSQL的自定义函数UDF与开窗函数

    一 自定义函数UDF 在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_ ...

  3. Spark学习之路(九)—— Spark SQL 之 Structured API

    一.创建DataFrame和Dataset 1.1 创建DataFrame Spark中所有功能的入口点是SparkSession,可以使用SparkSession.builder()创建.创建后应用 ...

  4. Spark学习之路 (九)SparkCore的调优之数据倾斜调优

    摘抄自:https://tech.meituan.com/spark-tuning-pro.html 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Sp ...

  5. Spark学习之路 (九)SparkCore的调优之数据倾斜调优[转]

    调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题--数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的 ...

  6. 嵌入式Linux驱动学习之路(十九)触摸屏驱动、tslib测试

    触摸屏使用流程: 1. 按下产生中断. 2.在中断处理程序中启动AD转换XY坐标. 3.AD转换结束并产生AD中断. 4. 在AD的中断处理函数中上报信息,启动定时器. 5. 定时器时间到后进入中断, ...

  7. IOS学习之路十九(JSON与Arrays 或者 Dictionaries相互转换)

    今天写了个json与Arrays 或者 Dictionaries相互转换的例子很简单: 通过 NSJSONSerialization 这个类的 dataWithJSONObject: options: ...

  8. JavaWeb学习记录(十九)——jstl自定义标签库之传统标签

    一.传统标签 (1)JSP引擎将遇到自定义标签时,首先创建标签处理器类的实例对象,然后按照JSP规范定义的通信规则依次调用它的方法. public void setPageContext(PageCo ...

  9. JavaWeb学习记录(十九)——jstl自定义标签之简单标签

    一.简单标签共定义了5个方法: setJspContext方法 setParent和getParent方法 setJspBody方法 doTag方法 二.方法介绍 osetJspContext方法 用 ...

随机推荐

  1. 一起了解 .Net Foundation 项目 No.1

    .Net 基金会中包含有很多优秀的项目,今天就和笔者一起了解一下其中的一些优秀作品吧. 中文介绍 中文介绍内容翻译自英文介绍,主要采用意译.如与原文存在出入,请以原文为准. Akka.NET Akka ...

  2. wireshark抓包思维导图---新手推荐

  3. Nginx 缓存命中率

    # 在http头部显示命中方式 location ~* ^.*\.(js|ico|gif|jpg|jpeg|png)$ { proxy_redirect off; proxy_set_header H ...

  4. prometheus operator(Kubernetes 集群监控)

    一.Prometheus Operator 介绍 Prometheus Operator 是 CoreOS 开发的基于 Prometheus 的 Kubernetes 监控方案,也可能是目前功能最全面 ...

  5. 无线网络WPA加密算法基础

    2013-11-13 23:08 (分类:网络安全) 对无线没什么认识,总听说有人蹭网,还有卖蹭网器的,于是补充一下知识. 无线加密有两类:WEP WAP,目前采用WEP加密的非常少了,WEP应该只是 ...

  6. Android之ScrollView嵌套ListView冲突 (listView只显示一行)

    在ScrollView中嵌套使用ListView,ListView只会显示一行多一点.两者进行嵌套,即会发生冲突.由于ListView本身都继承于ScrollView,一旦在ScrollView中嵌套 ...

  7. python爬虫实战:基础爬虫(使用BeautifulSoup4等)

    以前学习写爬虫程序时候,我没有系统地学习爬虫最基本的模块框架,只是实现自己的目标而写出来的,最近学习基础的爬虫,但含有完整的结构,大型爬虫含有的基础模块,此项目也有,“麻雀虽小,五脏俱全”,只是没有考 ...

  8. new function 到底做了什么?如何自己实现new function

    前言 这是继function 与 Function 关系后写下的. 写这个起源于,我无聊的时候看到一道题目: 'foo' == new function() { var temp=String('fo ...

  9. C# 四则运算及省市选择及日月选择

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  10. 【转载】sql-builder介绍

    原文链接:sql-builder介绍 关于sql-builder sql-builder尝试使用java对象,通过类SQL的拼接方式,动态快速的生成SQL.它可作为稍后的开源项目ibit-mybati ...