问题:

Python中yield关键字的作用是什么?它做了什么?

例如,我想理解以下代码

def node._get_child_candidates(self, distance, min_dist, max_dist):
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild

下面是调用者

result, candidates = list(), [self]
while candidates:
node = candidates.pop()
distance = node._get_dist(obj)
if distance <= max_dist and distance >= min_dist:
result.extend(node._values)
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

在_get_child_candidates这个函数被调用时发生了什么?返回了一个列表?还是只返回了一个元素?然后又再次被调用?什么时候调用结束?

这段代码的来源 Jochen Schulz (jrschulz), who made a great Python library for metric spaces. 完整源码链接: here


要了解yield的作用,你必须先明白什么是生成器,在此之前,你需要了解什么是可迭代对象(可迭代序列)

迭代

你可以创建一个列表,然后逐一遍历,这就是迭代

>>> mylist = [1, 2, 3]
>>> for i in mylist:
... print(i)
1
2
3

mylist是可迭代的对象,当你使用列表解析时,你创建一个列表,即一个可迭代对象

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
... print(i)
0
1
4

任何你可用 “for… in…” 处理的都是可迭代对象:列表,字符串,文件…. 这些迭代对象非常便捷,因为你可以尽可能多地获取你想要的东西

但,当你有大量数据并把所有值放到内存时,这种处理方式可能不总是你想要的 (but you store all the values in memory and it’s not always what you want when you have a lot of values.)

生成器

生成器是迭代器,但你只能遍历它一次(iterate over them once) 因为生成器并没有将所有值放入内存中,而是实时地生成这些值

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
... print(i)
0
1
4

这和使用列表解析地唯一区别在于使用()替代了原来的[]

注意,你不能执行for i in mygenerator第二次,因为每个生成器只能被使用一次: 计算0,并不保留结果和状态,接着计算1,然后计算4,逐一生成

yield

yield是一个关键词,类似return, 不同之处在于,yield返回的是一个生成器

>>> def createGenerator():
... mylist = range(3)
... for i in mylist:
... yield i*i
...
>>> mygenerator = createGenerator() # create a generator
>>> print(mygenerator) # mygenerator is an object!
<generator object createGenerator at 0xb7555c34>
>>> for i in mygenerator:
... print(i)
0
1
4

这个例子并没有什么实际作用,仅说明当你知道你的函数将产生大量仅被读取一次的数据时,使用生成器将是十分有效的做法

要掌握yield,你必须明白 - 当你调用这个函数,函数中你书写的代码并没有执行。这个函数仅仅返回一个生成器对象

这有些狡猾 :-)

然后,在每次for循环使用生成器时,都会执行你的代码

然后,是比较困难的部分:

第一次函数将会从头运行,直到遇到yield,然后将返回循环的首个值. 然后,每次调用,都会执行函数中的循环一次,返回下一个值,直到没有值可以返回

当循环结束,或者不满足”if/else”条件,导致函数运行但不命中yield关键字,此时生成器被认为是空的

问题代码的解释

生成器:

# 这你你创建了node的能返回生成器的函数
def node._get_child_candidates(self, distance, min_dist, max_dist): # 这里的代码你每次使用生成器对象都会调用 # 如果node节点存在左子节点,且距离没问题,返回该节点
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild # 同理,返回右子节点
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild # 如果函数运行到这里,生成器空,该节点不存在左右节点

调用者:

# 创建一个空列表,一个包含当前候选对象引用的列表
result, candidates = list(), [self] # 当前候选非空,循环(开始时仅有一个元素)
while candidates: # 从候选列表取出最后一个元素作为当前节点
node = candidates.pop() # 获取obj和当前节点距离
distance = node._get_dist(obj) # 如果距离满足条件,将节点值加入结果列表
if distance <= max_dist and distance >= min_dist:
result.extend(node._values) # 获取节点的子节点,加入到候选列表,回到循环开始, 这里使用了生成器
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
# 注意这里extend会反复调用获取到所有生成器返回值 return result

这段代码包含几个灵活的部分:

1.这个循环遍读取历候选列表,但过程中,候选列表不断扩展:-)

这是一种遍历嵌套数据的简明方法,虽然有些危险,你或许会陷入死循环中

在这个例子中, candidates.extend(node._get_child_candidates(distance, min_dist, max_dist)) 读取了生成器产生的所有值, 同时while循环产生新的生成器对象加入到列表,因为每个对象作用在不同节点上,所以每个生成器都将生成不同的值

2.列表方法extend() 接收一个生成器,生成器的所有值被添加到列表中

通常,我们传一个列表作为参数:

>>> a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4]

但是,在代码中,这个函数接受到一个生成器

这样的做法好处是:

1.你不需要重复读这些值

2.你可能有海量的子节点,但是不希望将所有节点放入内存

并且,可以这么传递生成器作为参数的原因是,Python不关心参数是一个方法还是一个列表

Python接收可迭代对象,对于字符串,列表,元组还有生成器,都适用!

这就是所谓的“鸭子类型”(duck typing), 这也是Python如此酷的原因之一, 但这是另一个问题了,对于这个问题……

你可以在这里完成阅读,或者读一点点生成器的进阶用法:

####控制一个生成器的消耗

>>> class Bank(): # let's create a bank, building ATMs
... crisis = False
... def create_atm(self):
... while not self.crisis:
... yield "$100"
>>> hsbc = Bank() # when everything's ok the ATM gives you as much as you want
>>> corner_street_atm = hsbc.create_atm()
>>> print(corner_street_atm.next())
$100
>>> print(corner_street_atm.next())
$100
>>> print([corner_street_atm.next() for cash in range(5)])
['$100', '$100', '$100', '$100', '$100']
>>> hsbc.crisis = True # crisis is coming, no more money!
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> wall_street_atm = hsbc.create_atm() # it's even true for new ATMs
>>> print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
>>> hsbc.crisis = False # trouble is, even post-crisis the ATM remains empty
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> brand_new_atm = hsbc.create_atm() # build a new one to get back in business
>>> for cash in brand_new_atm:
... print cash
$100
$100
$100
$100
$100
$100
$100
$100
$100
...

这在很多场景都非常有用,例如控制资源的获取

Itertools

一个很好的工具

itertools模块包含很多处理可迭代对象的具体方法. 例如

复制一个生成器?连接两个生成器?一行将嵌套列表中值分组?不使用另一个列表进行Map/Zip? (Ever wish to duplicate a generator? Chain two generators? Group values in a nested list with a one liner? Map / Zip without creating another list?)

只需要使用itertools模块

一个例子,4匹马赛跑的可能抵达顺序

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
(1, 2, 4, 3),
(1, 3, 2, 4),
(1, 3, 4, 2),
(1, 4, 2, 3),
(1, 4, 3, 2),
(2, 1, 3, 4),
(2, 1, 4, 3),
(2, 3, 1, 4),
(2, 3, 4, 1),
(2, 4, 1, 3),
(2, 4, 3, 1),
(3, 1, 2, 4),
(3, 1, 4, 2),
(3, 2, 1, 4),
(3, 2, 4, 1),
(3, 4, 1, 2),
(3, 4, 2, 1),
(4, 1, 2, 3),
(4, 1, 3, 2),
(4, 2, 1, 3),
(4, 2, 3, 1),
(4, 3, 1, 2),
(4, 3, 2, 1)]

了解迭代器的内部机制

迭代过程包含可迭代对象(实现iter()方法) 和迭代器(实现next()方法)

你可以获取一个迭代器的任何对象都是可迭代对象,迭代器可以让你迭代遍历一个可迭代对象(Iterators are objects that let you iterate on iterables.) [好拗口:]

更多关于这个问题的 how does the for loop work

如果你喜欢这个回答,你也许会喜欢我关于 decorators 和 metaclasses 的解释

[翻译]Python中yield的解释的更多相关文章

  1. [转]Python中yield的解释

    转自: http://python.jobbole.com/83610/ 本文作者: 伯乐在线 - wklken .未经作者许可,禁止转载!欢迎加入伯乐在线 专栏作者. 翻译 来源于stackover ...

  2. [翻译]PYTHON中如何使用*ARGS和**KWARGS

    [翻译]Python中如何使用*args和**kwargs 函数定义 函数调用 不知道有没有人翻译了,看到了,很短,顺手一翻 原文地址 入口 或者可以叫做,在Python中如何使用可变长参数列表 函数 ...

  3. Python中yield和yield from的用法

    yield python中yield的用法很像return,都是提供一个返回值,但是yield和return的最大区别在于,return一旦返回,则代码段执行结束,但是yield在返回值以后,会交出C ...

  4. Python Deque 模块使用详解,python中yield的用法详解

    Deque模块是Python标准库collections中的一项. 它提供了两端都可以操作的序列, 这意味着, 你可以在序列前后都执行添加或删除. https://blog.csdn.net/qq_3 ...

  5. Python关键字yield的解释(stackoverflow)

    3.1. 提问者的问题 Python关键字yield的作用是什么?用来干什么的? 比如,我正在试图理解下面的代码: def node._get_child_candidates(self, dista ...

  6. python中yield的用法

    ---"在python中,当你定义一个函数,使用了yield关键字时,这个函数就是一个生成器" (也就是说,只要有yield这个词出现,你在用def定义函数的时候,系统默认这就不是 ...

  7. python中yield用法

    在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor). 一.迭代器(iterator) 在Python中,for循环可以用于Python中的任何 ...

  8. Python中yield深入理解

    众所周知,python中的yield有这样的用法: def test(alist): for i in alist: yield i 这样,这个test函数就变成了一个生成器,当每次调用的时候,就会自 ...

  9. 关于Python中yield的一些个人见解

    # 样例代码def yield_test(n): for i in range(n): yield call(i) print("i=",i) #做一些其它的事情 print(&q ...

随机推荐

  1. MySQL笔记<一>创建数据库和表

    参考博客 https://www.cnblogs.com/sqbk/p/5806797.html https://www.cnblogs.com/tomasman/p/7151962.html

  2. VC开发多语言界面 多种方法(非常easy) 有源代码

    源代码地址(专业定制程序:MCU,Windows,Android .VC串口,Android蓝牙等不限.) (需源代码先留邮箱)先上图 1.通过遍历 得到全部控件ID号与TEXT,得到一个中文语言配置 ...

  3. Leetcode501.Find Mode in Binary Search Tree二叉搜索树中的众数

    给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素). 假定 BST 有如下定义: 结点左子树中所含结点的值小于等于当前结点的值 结点右子树中所含结点的值大于等于当 ...

  4. cmd 运行 python

    ①cmd 进入行命令: ②输入 “python” + “空格”,即 ”python “:将已经写好的脚本文件拖拽到当前光标位置,然后敲回车运行即可.

  5. php 7.2 安装 mcrypt 扩展

    升级 php 7.2 后,使用微信提供的加解密代码时,提示 call to undefined function mcrypt_module_open() :大脑疯狂运转1秒钟后,得出结论:php 7 ...

  6. 利用SQL查询扶贫对象医保报销比率的审计方法

    利用SQL查询扶贫对象医保报销比率的审计方法 扶贫资金惠及贫困百姓的切身利益,主管部门多,资金实行逐级下拨,并且扶贫项目小而分散,主要在乡镇和农村实施.根据湖北省审计厅关于2017年扶贫审计工作方案的 ...

  7. python-None

    今天偶然间,有人问了一个问题,项目中出现了一个这样的错误. 看到后,就想到是前后数据类型不一致.当时他定义了一些默认初始值为None(刚接触python代码,之前是c,java),然后就后边出现了这样 ...

  8. Effective Modern C++:07并发API

    C++11的志伟功勋之一,就是将并发融入了语言和库中,因此在C++的历史上,程序员可以首次跨越所有平台撰写具有标准行为的多线程程序. 35:优先选用基于任务而非基于线程的程序设计 如果需要以异步的方式 ...

  9. Liferay如何连接本地的数据库

    Liferay自带的数据库非常迷你,一般就是玩玩的. 在真实的开发过程中,我们往往需要把它与我们本地的数据库相连. 有3中方法,我在这里就只介绍我自己最喜欢的方法啦.连的是mysql 1.在Lifer ...

  10. 阿里云王广芳:5G时代,我们需要怎样的边缘计算?

    7月24日阿里云峰会开发者大会的IT基础设施云化专场中,阿里云边缘计算高级技术专家王广芳进行了边缘节点服务重大升级发布,同时与现场观众一同探讨了5G时代边缘计算的思考与技术实践. 5G时代,我们需要怎 ...