parzen 窗的matlab实现
用一下程序简单实现使用parzen窗对正态分布的概率密度估计:
(其中核函数选用高斯核)
%run for parzen
close all;clear all;clc;
x=normrnd(0,1,1,10000);%从正态分布中产生样本
f=-5:0.01:5;%确定横坐标范 % N=100 h= 0.25 , 1, 4
p1=Parzen(x,0.25,10,f);
p2 = Parzen(x,1,10,f);
p3 = Parzen(x,4,10,f);
subplot(331)
plot(f,p1)
subplot(332)
plot(f,p2)
subplot(333)
plot(f,p3) hold on
% N=100 h= 0.25 , 1, 4
p1=Parzen(x,0.25,100,f);
p2 = Parzen(x,1,100,f);
p3 = Parzen(x,4,100,f);
subplot(334)
plot(f,p1)
subplot(335)
plot(f,p2)
subplot(336)
plot(f,p3) hold on
% N=1000 h= 0.25 , 1, 4
p1=Parzen(x,0.25,1000,f);
p2 = Parzen(x,1,1000,f);
p3 = Parzen(x,4,1000,f);
subplot(337)
plot(f,p1)
subplot(338)
plot(f,p2)
subplot(339)
plot(f,p3)
function p = Parzen(x,h,N,f)
% 高斯函数Parzen 窗 统计落在parzen窗内的估计概率
% h - 窗长度
% N -采样点数
b=0;
h1 = h/sqrt(N);
for i=1:length(f)
for j=1:N
b= b+ exp(((f(i)-x(j))/h1).^2/(-2))/sqrt(2*pi)/h1;
end
p(i) = b/N;
b=0;
end
end
parzen 窗的matlab实现的更多相关文章
- 机器学习 —— 基础整理(三)生成式模型的非参数方法: Parzen窗估计、k近邻估计;k近邻分类器
本文简述了以下内容: (一)生成式模型的非参数方法 (二)Parzen窗估计 (三)k近邻估计 (四)k近邻分类器(k-nearest neighbor,kNN) (一)非参数方法(Non-param ...
- 非参数估计——核密度估计(Parzen窗)
核密度估计,或Parzen窗,是非参数估计概率密度的一种.比如机器学习中还有K近邻法也是非参估计的一种,不过K近邻通常是用来判别样本类别的,就是把样本空间每个点划分为与其最接近的K个训练抽样中,占比最 ...
- 作图直观理解Parzen窗估计(附Python代码)
1.简介 Parzen窗估计属于非参数估计.所谓非参数估计是指,已知样本所属的类别,但未知总体概率密度函数的形式,要求我们直接推断概率密度函数本身. 对于不了解的可以看一下https://zhuanl ...
- matlab中figure创建图窗窗口
来源:https://ww2.mathworks.cn/help/matlab/ref/figure.html?searchHighlight=figure&s_tid=doc_srchtit ...
- matlab中figure 创建图窗窗口
来源:https://ww2.mathworks.cn/help/matlab/ref/figure.html?searchHighlight=figure&s_tid=doc_srchtit ...
- 统计决策——贝叶斯决策理论(Bayesian Decision Theory)
(本文为原创学习笔记,主要参考<模式识别(第三版)>(张学工著,清华大学出版社出版)) 1.概念 将分类看做决策,进行贝叶斯决策时考虑各类的先验概率和类条件概率,也即后验概率.考虑先验概率 ...
- Python KNN算法
机器学习新手,接触的是<机器学习实战>这本书,感觉书中描述简单易懂,但对于python语言不熟悉的我,也有很大的空间.今天学习的是k-近邻算法. 1. 简述机器学习 在日常生活中,人们很难 ...
- 非参数估计:核密度估计KDE
http://blog.csdn.net/pipisorry/article/details/53635895 核密度估计Kernel Density Estimation(KDE)概述 密度估计的问 ...
- 学习笔记之机器学习实战 (Machine Learning in Action)
机器学习实战 (豆瓣) https://book.douban.com/subject/24703171/ 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中 ...
随机推荐
- [译文] 为什么你在 C# 里总是应该使用 "var" 关键字
[译文] Why You Should Always Use the 'var' Keyword in C# (为什么你总是应该在 C# 里使用 "var" 关键字) Using ...
- Dubbo的核心组件、架构设计与Dubbo面试考点
1.Dubbo是什么? Dubbo 是一个分布式.高性能.透明化的 RPC 服务框架,提供服务自动注册.自动发现等高效服务治理方案, 可以和 Spring 框架无缝集成. RPC 指的是远程调用协议, ...
- 【一起学源码-微服务】Nexflix Eureka 源码十一:EurekaServer自我保护机制竟然有这么多Bug?
前言 前情回顾 上一讲主要讲了服务下线,已经注册中心自动感知宕机的服务. 其实上一讲已经包含了很多EurekaServer自我保护的代码,其中还发现了1.7.x(1.9.x)包含的一些bug,但这些问 ...
- 聊一聊 MySQL 中的事务及其实现原理
说到数据库,那就一定会聊到事务,事务也是面试中常问的问题,我们先来一个面试场景: 面试官:"事务的四大特性是什么?" 我:"ACID,即原子性(Atomicity).隔离 ...
- Visual Studio 2015 编译生成支持HTTPS协议的libcurl静态库
由于之前的工作需要使用libcurl 开源项目库 在各种研究后发现无法使用HTTPS协议 后来经过各种翻阅文档,发现需要OpenSSL支持,这个需要自己下载并自己编译生成 lib 或者 dll 至于O ...
- InterpreterPattern(解释器模式)-----Java/.Net
解释器模式(Interpreter Pattern)提供了评估语言的语法或表达式的方式,它属于行为型模式.这种模式实现了一个表达式接口,该接口解释一个特定的上下文.这种模式被用在 SQL 解析.符号处 ...
- BridgePattern(桥接模式)-----Java/.Net
桥接(Bridge)是用于把抽象化与实现化解耦,使得二者可以独立变化.这种类型的设计模式属于结构型模式,它通过提供抽象化和实现化之间的桥接结构,来实现二者的解耦
- 「洛谷P1233」木棍加工 解题报告
P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...
- 「学习笔记」 FHQ Treap
FHQ Treap FHQ Treap (%%%发明者范浩强年年NOI金牌)是一种神奇的数据结构,也叫非旋Treap,它不像Treap zig zag搞不清楚(所以叫非旋嘛),也不像Splay完全看不 ...
- tomcat 介绍及环境搭建
一.tomcat介绍 Tomcat 服务器是一个免费的开放源代码的 Web 应用服务器,属于轻量级应用服务器,在中小型 系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试 JSP 程序的首选. ...