Luogu P2822 组合数问题(前缀和)
题意
题目描述
组合数\(C_n^m\)表示的是从\(n\)个物品中选出\(m\)个物品的方案数。举个例子,从\((1,2,3)\)三个物品中选择两个物品可以有\((1,2),(1,3),(2,3)\)这三种选择方法。根据组合数的定义,我们可以给出计算组合数\(C_n^m\)的一般公式:
\]
其中\(n!=1\times 2\times \cdots \times n\);特别地,定义\(0!=1\)。
小葱想知道如果给定\(n,m\)和\(k\),对于所有的\(0\leq i\leq n,0\leq j\leq \min \left( i, m \right)\)有多少对\((i,j)\)满足\(C_i^j\)是\(k\)的倍数。
输入输出格式
输入格式:
第一行有两个整数\(t,k\),其中\(t\)代表该测试点总共有多少组测试数据,\(k\)的意义见问题描述。
接下来\(t\)行每行两个整数\(n,m\),其中\(n,m\)的意义见问题描述。
输出格式:
共\(t\)行,每行一个整数代表所有的\(0\leq i\leq n,0\leq j\leq \min \left( i,m\right)\)中有多少对\((i,j)\)满足\(C_i^j\)是\(k\)的倍数。
输入输出样例
输入样例#1:
1 2
3 3
输出样例#1:
1
输入样例#2:
2 5
4 5
6 7
输出样例#2:
0
7
说明
【样例1说明】
在所有可能的情况中,只有\(C_2^1=2\)是\(2\)的倍数。
【子任务】

思路
\(10\)个月以前,当我和一位数竞党聊起这道题的时候,他启发我,可以利用\(k\)的特性来特判每一个数据点。当时的我嫌麻烦,没有这样写。如今问了\(Mercury\)这道题的做法,才发现正解才是\(OI\)思维,之前的想法太偏数学了。
首先,杨辉三角的值与组合数相同,我们可以用求杨辉三角的方法很快求出组合数。在求的过程中,组合数对\(k\)取模,若该位为\(0\),则说明它是\(k\)的倍数。
然后就是这道题的精髓了:用一个二维数组\(s[i][j]\)统计组合数为\(0\)的情况的前缀和。转移方法是:\(s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+[c[i][j]=0]\)。
然后直接输出前缀和就好啦。
AC代码
#include<bits/stdc++.h>
using namespace std;
int t,k,a[2005][2005],s[2005][2005];
int read()
{
int re=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
int main()
{
t=read(),k=read();
a[1][1]=1;
for(int i=2;i<=2001;i++)
{
for(int j=1;j<=i;j++) a[i][j]=(a[i-1][j-1]+a[i-1][j])%k;
for(int j=1;j<=i;j++) s[i][j]=s[i][j-1]+(!a[i][j]);
for(int j=i+1;j<=2001;j++) s[i][j]=s[i][i];
for(int j=1;j<=2001;j++) s[i][j]+=s[i-1][j];
}
while(t--)
{
int x=read(),y=read();
printf("%d\n",s[x+1][y+1]);
}
return 0;
}
Luogu P2822 组合数问题(前缀和)的更多相关文章
- Luogu P2822 组合数问题
思路 组合数的话,首先肯定是想到杨辉三角啊.不傻的都知道要预处理一张组合数表,但是你以为这样就可以了吗???显然,不可能的.那询问的时候复杂度就成了$\large{O(t*n)}$,凉凉.那咋办,用二 ...
- P2822 组合数问题——巧用前缀和
P2822 组合数问题 求的是C(i,j)有多少个是k的倍数: 首先,求组合数是有技巧的, 用杨辉三角求组合数,爽的一批: 但是,这样只能得90分,两个点T了: 因为k是不变的,我们可以用前缀和的思想 ...
- CJOJ 2255 【NOIP2016】组合数问题 / Luogu 2822 组合数问题 (递推)
CJOJ 2255 [NOIP2016]组合数问题 / Luogu 2822 组合数问题 (递推) Description 组合数\[C^m_n\]表示的是从n个物品中选出m个物品的方案数.举个例子, ...
- Luogu P2822 [NOIp2016提高组]组合数问题 | 数学、二维前缀和
题目链接 思路:组合数就是杨辉三角,那么我们只要构造一个杨辉三角就行了.记得要取模,不然会爆.然后,再用二维前缀和统计各种情况下组合数是k的倍数的方案数.询问时直接O(1)输出即可. #include ...
- 洛谷P2822 组合数问题(题解)
https://www.luogu.org/problemnew/show/P2822(题目传送) 先了解一下有关组合数的公式:(m在上,n在下) 组合数通项公式:C(n,m)=n!/[m!(n-m) ...
- 洛谷P2822组合数问题
传送门啦 15分暴力,但看题解说暴力分有30分. 就是找到公式,然后套公式.. #include <iostream> #include <cstdio> #include & ...
- 洛谷 P2822 组合数问题
题目描述 组合数C_n^mCnm表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的 ...
- 洛谷——P2822 组合数问题
https://www.luogu.org/problem/show?pid=2822 题目描述 组合数C_n^mCnm表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三 ...
- P2822组合数问题
组合数问题(NOIP2016提高组Day2T1) Time Limit:1000MS Memory Limit:512000K [题目描述] 组合数表示的是从n个物品中选出m个物品的方案数.举个例子 ...
随机推荐
- NOIp2018集训test-9-17(am)
这是一套去年在长沙考过的题,但是我当时就没理清楚+没写题解(我以前很多博客都写得跟shi一样,完全没有意义,看到就想打当时的我),所以又考得稀烂. T1.star way to heaven 容易想到 ...
- NX二次开发-UFUN新建工程图UF_DRAW_create_drawing
NX9+VS2012 #include <uf.h> #include <uf_draw.h> #include <uf_part.h> UF_initialize ...
- NX二次开发-UFUN获取一个图层类别的tag UF_LAYER_ask_category_tag
NX11+VS2013 #include <uf.h> #include <uf_ui.h> #include <uf_layer.h> UF_initialize ...
- 配置Dubbo Demo遇到的坑之一---找不到dubbo.xsd文件
原文地址:https://blog.csdn.net/qq_36654870/article/details/80603302 1.dubbo.xsd文件不能读取 因为阿里http://code.al ...
- 1、linux常用命令的英文单词缩写
1.linux常用命令的英文单词缩写 命令缩写: ls:list(列出目录内容) cd:Change Directory(改变目录) su:switch user 切换用户 rpm:redhat pa ...
- CTF里的LSB
- ajax 接收json数据的进一步了解
var url = "../searchclasses"; $.ajax({ url: url, type: "post", dataType: "j ...
- <Django>一些小知识
''' ORM import pymysql pymysql.connect( ... ... ) 1.不同的程序员写的SQL水平参差不齐 2.执行效率也参差不齐 python语法 --自动翻译 -- ...
- Fedora25安装mariadb并设置权限
MariaDB版本10.1.21 Fedora版本25 1.Change root user sudo -i 2. dnf install -y mysql dnf install -y mariad ...
- Selenium(二)---无界面模式+滑动底部
一.使用无界面模式 1.正常情况启动 selenium 是有界面的 2.有些情况下,需要不显示界面,这时只要设置一下参数就可以实现了 # 不想显示界面可以用 Chrome——配置一下参数就好 from ...